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Abstract With the advances in understanding perceptual properties of the human visual sys-
tem, perceptual video coding, which aims to incorporate human perceptual mechanisms into
video coding for maximizing the perceptual coding efficiency, becomes an essential research
topic. Since the newest video coding standard—high efficiency video coding (HEVC) does
not fully consider the perceptual characteristic of the input video, a perceptual feature guided
rate distortion optimization (RDO) method is presented to improve its perceptual coding
performance in this paper. In the proposed method, for each coding tree unit, the spatial
perceptual feature (i.e., gradient magnitude ratio) and the temporal perceptual feature (i.e.,
gradient magnitude similarity deviation ratio) are extracted by considering the spatial and
temporal perceptual correlations. These perceptual features are then utilized to guide theRDO
process by perceptually adjusting the corresponding Lagrangian multiplier. By incorporating
the proposed method into the HEVC, extensive simulation results have demonstrated that the
proposed approach can significantly improve the perceptual coding performance and obtain
better visual quality of the reconstructed video, compared with the original RDO in HEVC.

Keywords Human visual system · High efficiency video coding · Perceptual feature · Rate
distortion optimization

1 Introduction

In recent years, high definition (HD) and ultra HD (UHD) videos are being increasingly
popular due to their high fidelity, which poses great challenge on the video storage and
transmission. In this context, the joint collaborative team on video coding (JCT-VC) standard
organization formed by video coding experts group (VCEG) and moving picture experts
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group (MPEG) developed the newest video coding standard, namely, high efficiency video
coding (HEVC) Sullivan et al. (2012), Ugur et al. (2010). Compared with the previous video
coding standards, HEVC still follows the classical hybrid block-based coding framework
and introduces a lot of the latest video technological achievements Wang et al. (2014). With
much higher coding efficiency, HEVC is expected to be widely applied in different areas,
such as online education, video broadcasting, entertainment, and so on.

As we known, the objective of developing the video coding technology is to provide
the highest perceptual visual quality under a given bit rate budget. However, similar to the
previous video coding standards, HEVC still exploits the classical Lagrangian rate distortion
optimization (RDO) technique to maximize the coding efficiency measured by the objective
criterion (i.e., Sum of Square Error, SSE), which can not accurately reflect the perceptual
visual quality Girod (1993). In other words, HEVC does not fully consider the perceptual
characteristics of the input video during the encoding process and thus has room to be
improved in the perceptual measurement. Since the video quality is ultimately judged by
human eye, it is very desirable to develop some perceptual guided optimization strategies for
HEVC in order to improve its perceptual coding efficiency.

First of all, with the development in understanding perceptual properties of the human
visual system (HVS), visual quality assessment (VQA) has attracted more and more atten-
tions from both academical and industrial communities Wang et al. (2004), Zhang et al.
(2011), Ma et al. (2011), Xue et al. (2014). For example, the well-known VQA metric—
structural similarity index (SSIM), which can accurately describe the structure inherited
in visual content, has been proposed by Wang et al. (2004). Zhang et al. (2011) proposed a
practical full-reference (FR)metric by jointly considering the texturemasking effect and con-
trast sensitivity function. Ma et al. (2011) proposed a reduced-reference (RR) image quality
assessment based on the statistical model of the discrete cosine transform (DCT) coefficient
distribution. For the perceptual video coding, the straightforward solution is to incorporate
the existing VQA metrics that can more accurately describe the human perception into the
video codec to improve its perceptual coding efficiency. For example, some perceptual video
coding methods utilized the well-known SSIM in the DCT domain Wang et al. (2013), RDO
Huang et al. (2010), Wang et al. (2012), Yeo et al. (2013) and rate control Ou et al. (2011),
Zhao et al. (2013) to reduce the perceptual redundancies. Among them, Wang et al. (2013)
proposed a normalization factor based on DCT domain-SSIM index to transform the DCT
residual into the perceptually uniform space together with a new distortionmodel for improve
the perceptual coding efficiency. Huang et al. (2010) introduced the SSIM to replace the SSE
as the quality metric and developed a SSIM-based RDO using the coding information of
the key frame. Yeo et al. (2013) further derived the relationship between the SSIM-based
RDO and the original RDO used in H.264/AVC. Ou et al. (2011) presented a rate control
method by exploiting the SSIM-based RDO based on the framework presented in Huang
et al. (2010). Zhao et al. (2013) proposed an improved Largest coding unit (LCU)-level rate
control algorithm for HEVC based on the SSIM. In this method, the SSIM is used to decide
the weight of LCU-level bit allocation in the R-λ model so that the rate is allocated based on
the perceptual characteristics of each LCU.

However, it should be pointed out that some VQAmetrics are not applicable to perceptual
video coding due to high computational complexity and compatibility issues. Different from
the above-mentioned methods that optimize the coding performance in terms of the existing
VQA metric—SSIM, some perceptual video coding methods exploited various important
perceptual properties ofHVS tomeasure the perceptual characteristics in video, such as visual
attention, visual sensitivity, contrast sensitivity, structural information, to name a few Chen
et al. (2010), Lee and Ebrahimi (2012). Xu et al. (2014) proposed a region-of-interest (ROI)
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based HEVC coding approach for conversional videos with a novel hierarchical perception
model of face. Moreover, a weight-based unified rate-quantization scheme is proposed to
adaptively adjust the value of quantization parameter (QP) rather than the conventional pixel-
based unified rate-quantization scheme. Meddeb et al. (2014) developed a new rate control
scheme for HEVC standard with the aim of improving the perceptual quality of ROI. Li et al.
(2015) suggested a newweight-basedR-λmethod for the rate control inHEVCspecifically for
conversational videos by incorporating the perceptual properties of the conversational videos.
Wang et al. (2014) proposed a Lagrangianmultiplier based perceptual optimization scheme to
improve the perceptual quality forHEVC. Zeng et al. (2013) proposed an adaptively adjusting
Lagrangian multiplier in the RDO process based on the perceptual sensitivity of the input
CTU. Jung and Chen (2015) obtained an adaptive Lagrangian multiplier based on the free-
energy principlewhich represents the disorderly concealment effect in human eyes. Zeng et al.
(2015) proposed a perceptual rate control method for HEVC to obtain the perceptual coding
gain by adaptively allocating the bits for the region with different perceptual measurements.
Xu et al. (2013) proposed a new visual qualitymetric, in whichMSE is weighted spatially and
temporally to simulate the HVS response to visual signal. Moreover, the visual quality metric
related to quantization parameter is capable of guiding perceptual video coding. Ma et al.
(2011) proposed a novel adaptive block-size transform based just-noticeable different (JND)
model to improve the perceptual coding performance by considering both the spatial and
temporal perceptual features. Kim et al. (2015) introduced a HEVC-compliant perceptual
video coding scheme based on the JND models in both transform and pixel domains for
variable block-size transform kernels. The transform-domain JND model is designed by
adopting an existing pixel-domain JND model for the transform skip model and considering
the spatial JND characteristics.

In this paper, a perceptual feature guided rate distortion optimization (RDO) approach is
proposed for HEVC. The improvement of the perceptual coding efficiency is due to that the
proposed method adaptively adjusts the Lagrangian multiplier in the RDO process according
to the perceptual characteristic of video content, which is evaluated by two perceptual features
extracted for each CTU. As a result, the CTU with higher texture complexity or lower
perceptual distortion will be allocated with less bits, since it can tolerate more distortion.
On the contrary, more bits will be allocated to the CTU that is more sensitive in human
perception. Simulation results show that the proposed method can significantly improve the
perceptual coding performance, compared with the original RDO in HEVC.

The remaining parts of this paper is organized as follows. The RDO conducted in the
HEVC is briefly introduced in Sect. 2. The proposed perceptual feature guided RDOmethod
is presented in Sect. 3. The simulation results are provided in Sect. 4. Finally, the concluding
remarks are given in Sect. 5.

2 Rate distortion optimization in HEVC

In theHEVC, rate distortion optimization (RDO) plays an important role in themode decision
process, which is to find a good trade-off between the reconstructed video quality and the
required bits. To adapt to various video content, there are various prediction modes in HEVC
that can be roughly classified into Intra, SKIP, and Inter Modes, as shown in Fig. 1. For
example, the modewith larger size (e.g., M×M) consumes less bits for head information and
is efficient to code the picture block with homogeneous textures. In contrast, the mode with
smaller size (e.g.,M/2×M/2) providesmore accurate prediction and thus yields less residual,
at the expense of higher head information. The mode decision process is to exhaustively
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(a) (b) (c)

Fig. 1 Prediction modes in HEVC

compute the RD cost of all the prediction modes and find the one with the minimum RD
cost as the optimal mode. In fact, this process is an optimization problem that minimizes the
overall reconstructed video distortion D at a given rate R.

The Lagrangian RDO used in HEVC is defined as:

JRD = D + R · λHEVC (1)

where JRD is the Lagrangian cost function, D means the distortion between the original
block and its reconstructed block, R represents the total number bits for coding the headers,
quantized coefficients, etc. measured in terms of bits per pixel. The λHEVC is the Lagrangian
multiplier, which is a weighting factor between distortion and bits as defined:

λHEVC = α · 2
(
QP−12
3.0

)
(2)

where QP is the quantization parameter, and the α is a constant that is empirically-determined
and defined in HEVC.

It can be easily observed from formulation (1) that the RDO in HEVC ignores the per-
ceptual characteristics of the video content. On one hand, the distortion is measured in terms
of SSE that is not highly related to the HVS. On the other hand, the λHEVC plays a very
important role in the optimization of the coding performance. For example, a lager λHEVC
will result in a higher distortion and a lower bit rate, and vice versa. Unfortunately, one can
see from Eq. (2) that the λHEVC is only a function of QP, which does not consider the video
contents and their perceptual characteristics. The above analysis indicates that the HEVC is
not so efficient in the sense of perceptual video coding. To improve the perceptual coding
efficiency, perceptual RDO is an efficient solution.

3 Proposed perceptual feature guided RDO for HEVC

It is known that the perceptual video coding is to remove the perceptual spatial and temporal
redundancies inherited in the video. Hence, the key of perceptual video coding becomes how
to extract the perceptual feature and how to use the related perceptual feature to guide the
video coding. In this work, to improve the perceptual coding efficiency, a perceptual feature
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Fig. 2 An example of the reconstructed video framewith different texture complexity and similar PSNRunder
lowdelay setting inHEVC: a “PartyScene” (1920×1080, 11th frame,PSNR = 26.31 dB);b “BasketballDrill”
(1920×1080, 2nd frame, PSNR = 26.59 dB), where the original frame and the reconstructed frame are listed
from left to right

guided RDO is proposed for HEVC by perpetually adjusting Lagrangian multiplier based on
the perceptual features of the input video content. More specifically, the perceptual features
are extracted and utilized to guide the adjustment of the Lagrangian multiplier so that the
bit rates can be adaptively allocated based on the perceptual features of the video content.
Consequently, the perceptual coding efficiency is greatly improved.

3.1 Perceptual features

First, from the spatial viewpoint, the viewer is more sensitive to the smooth texture region;
on the contrary, the complex texture region is detail-irrelevant and thus quite a large amount
of errors can be hidden in such kind of region Lee and Ebrahimi (2012). In the other words,
the same distortion will produce higher perceptual quality reduction in the smooth texture
region than the complex texture region. Figure 2 shows an example of the reconstructed video
frame with complex texture and smooth texture under the similar PSNR in HEVC. One can
see that sequence “PartyScene” in Fig. 2a contains multiple objects and sophisticate and
messy background, which is more complex than sequence “BasketballDrill” in Fig. 2b. By
introducing the similar distortion (i.e., with similar PSNR) produced byHEVC into these two
different kinds of video frames, it can be observed that the perceptual quality of the video
frame “PartyScene” is acceptable while that of “BasketballDrill” is significantly reduced,
for example, the face of the player becomes blur and the block artifacts are very obvious in
the basketball court. This study clearly indicates that the complex texture region is able to
hide more distortion than the smooth region. Further study shows that the smoothness of the
image region can be reflected by its edge information Xue et al. (2014), Tang et al. (2006). It
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means that the human perception of the image region can be indicted by its edge description.
Based on this intuition, the gradient is used to extract the spatial perceptual feature due to
its simplicity and efficiency. Since the basic processing unit in HEVC is the coding tree unit
(CTU), the gradient computation is performed on each CTU tomeasure its smoothness.More
specifically, the CTU with higher gradient magnitude tends to have complex texture while
the one with lower gradient magnitude tends to be a smooth CTU.

In this work, for each CTU, the gradient extraction is to convolve it with the Prewitt filter
H , along the horizontal (i.e., Hx ) and vertical (i.e., Hy) directions as below:

Hx = 1

3
×

⎡
⎣
1 0 −1
1 0 −1
1 0 −1

⎤
⎦, Hy = 1

3
×

⎡
⎣
1 1 1
0 0 0
−1 −1 −1

⎤
⎦ (3)

For the i-th pixel (i.e., Pi ) in theCTU, its gradientmagnitude, namely,GMPi , canbe computed
as follows:

GMPi =
√

(CTU ⊗ Hx )2(i) + (CTU ⊗ Hy)2(i) (4)

where the symbol ⊗ means the convolution operation. Consequently, the total gradient mag-
nitudes of the currentCTU are computed by adding the gradient magnitudes of all the pixels
as follows:

GMCTU =
N∑
i=1

GMPi (5)

where N is the number of pixel in the CTU . Similarly, the mean gradient magnitude of each
frame is computed by:

MGMCTU =
∑K

i=1 GMCTU (i)

K
(6)

where K is the number of CTU in a frame. Intuitively, the mean gradient magnitude repre-
sents the average degree of the texture complexity. If the CTU has higher gradient magnitude
than this mean gradient magnitude value, it means that this CTU tends to have more complex
texture in this frame. Therefore, a gradient magnitude ratio (GMR) is presented to describe
the perceptual feature of the current CTU, which can be computed as:

GMR(i) = GMCTU (i) + c1
MGMCTU + c1

(7)

where c1 is an empirically-determined small constant to avoid the instable special case that
the current CTU is very smooth and thus the mean gradient magnitude is zero. One can see
that the smaller the GMR value is, the smoother the current CTU is. On the contrary, the
more complex CTU will correspond to higher GMR value.

Second, from the temporal viewpoint, there exists strong temporal corrections between the
current CTU and its temporal adjacent CTUs. Moreover, the temporal adjacent CTUs have
been coded and some coding information can be reused. Hence, it would be reasonable to
use the perceptual characteristic of the temporal adjacent CTUs to predict that of the current
CTU. Motivated by this, instead of the commonly-used objective quality metrics (e.g., SSE,
MAD), the recent proposed well-known subjective quality assessment—gradient magnitude
similarity deviation (GMSD) Xue et al. (2014) is exploited to measure the perceptual quality
of the temporal-adjacent CTUs in the first stage. Then, the temporal perceptual feature of the
current CTU, GMSDCTU0 , can be predicted by using the temporal correlation as follows.
Figure 3 shows the current CTU, CTU0 and its temporal adjacent CTUs.
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Fig. 3 The current CTU, CTU0
and its temporal adjacent CTUs

Frame m-1 Frame m

Table 1 The weights wi for the
temporal adjacent CTUs

CTU ′s index i 1 2, 3, 4, 5

wi 0.5 0.125

GMSDCTU0 =
5∑

i=1

GMSDCTUi · wi (8)

where wi are the weights of the corresponding CTUi in Fig. 3, for i=1, 2, 3, 4 and 5. It is
known that the closer the neighboring CTU is, the more similar the neighboring CTU is, the
larger weight the neighboring CTU is. Based on this intuition, the weightswi are empirically
determined fromextensive experiments and are shown inTable 1. TheGMSDCTUi means the
GMSD of corresponding CTUi , where the GMSD has been demonstrated its effectiveness
on perceptual quality assessment Xue et al. (2014) and can be computed as:

GMSD =
√√√√ 1

N

N∑
i=1

(GMS(i) − GMSM)2

GMSM = 1

N

N∑
i=1

GMS(i)

GMS(i) = 2GMr (i)GMd(i) + c

GMr (i)2 + GMd(i)2 + c
(9)

where N means the number of pixel in current CTU,GMSM means the mean of the gradient
magnitude similarity of all the pixels in the current CTU, GMS(i) means the gradient mag-
nitude similarity of current CTU at pixel i , the GMr (i) and GMd(i) represent the gradient
magnitudes of the reference and distorted CTUs at pixel i , which can be computed according
to Eq. (4).

Note that, for the current CTU, the higher the GMSD score is, the lager the perceptual
distortion is, which means this CTU could tolerate less distortion. Similarly, the GMSD
ratio, GMSDR, is presented to describe the perceptual ratio of the current CTU and can be
computed as:
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GMSDRCTU0 = GMSDCTU0

MGMSD
(10)

where

MGMSD =
∑K

i=1 GMSDCTUi

K
(11)

where K is the number of CTUs in a frame, MGMSD is the mean GMSD of all the CTUs
in the temporal adjacent frame. It can be easily observed that the higher the GMSDR value
is, the less perceptual distortion can be added. On the contrary, the CTU with the lower
GMSDR tends to tolerate more distortion.

3.2 Perceptual feature guided RDO

Based on the above analysis, the perceptual features GMR and GMSDR can effectively
reflect the perceptual characteristic of the current CTU. The consequent problem is how
to use these perceptual features to guide the encoding process for improving the perceptual
coding performance. In thiswork, a perceptual feature guidedRDO is presented by adaptively
adjusting the Lagrangian multiplier for each CTU based on the extracted perceptual features
as follows.

The perceptual features GMR and GMSDR represent the perceptual characteristic of
the current CTU from the spatial and temporal viewpoints, respectively. On one hand, the
larger GMR means the current CTU tends to have more complex texture. On the other hand,
the smaller GMSDR means the current CTU tends to have good perceptual quality already.
Hence, the CTU with larger GMR and lower GMSDR should be allocated with less bits.
Intuitively, they contribute equally to the perceptual evaluation of the current CTU. Hence,
a simple strategy for the evaluation of the perceptual characteristic (PC) of the current CTU
is to combine them together by multiplying GMR and the inverse of GMSDR, as follows.

PC = GMR

GMSDR
(12)

One can see that the PC value will be increased with the values ofGMR and 1
GMSDR , which

makes full use of the spatial and temporal perceptual correlations of the current CTU and
its adjacent CTUs. The larger PC value indicates that the current CTU has more complex
texture or less perceptual distortion, which can be hidden with more distortion and thus be
allocated with less bits. Hence, it is reasonable to allocate the bits based on the PC value of
the current CTU.Moreover, from the RDO process referred to Eq. (1), the larger λHEVC will
make the current CTU choosing the mode that produces higher distortion and lower bit rate.
Therefore, the perceptual characteristic PC can be incorporated into the RDO process by
guiding the adjustment of the Lagrangian multiplier to adaptively allocate the bits for each
CTU so that the perceptual RD performance can be improved. To be more specific, the CTU
with larger PC value can be assigned with the larger Lagrangian multiplier, as it can tolerate
larger amount of distortions. On the contrary, CTU with smaller PC value can be assigned
with the smaller Lagrangian multiplier so that more bits can be allocated with these more
sensitive CTUs. In the other words, the relationship between the Lagrangian multiplier and
PC value is monotone increasing. Hence, the proposed perceptual feature guided RDO can
be summarized as follows:

JRD = D + R · λPC (13)
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where λPC is the perceptual feature guided Lagrangian multiplier and can be defined as
below:

λPC = (a · PC + b) × λHEVC (14)

where a and b are empirically determined as 1.2 and 0.01 from extensive experiments,
respectively.

In summary, the proposed perceptual feature guided RDO algorithm for HEVC can be
described as below:

1) For the current frame, compute the gradient magnitude of each CTU according to (5) and
then obtain its mean gradient magnitude MGM according to (6).

2) For the current CTU, compute the spatial perceptual feature—gradient magnitude ratio
GMR based on (7).

3) Estimate the gradient magnitude similarity deviationGMSD of the currentCTU accord-
ing to (8) and then obtain the temporal perceptual feature—gradient magnitude similarity
deviation ratio GMSDR based on (10).

4) Compute the perceptual characteristic (PC) according to (12) and then derive the per-
ceptual feature guided λPC by (14).

5) Proceed to the mode decision process of the current CTU using the proposed perceptual
feature guided RDO.

6) Repeat Steps (2) to (5) until all the CTUs in the current frame are encoded.
7) Repeat Steps (1) to (6) until all the frames are encoded.

4 Experiment result and discussion

4.1 Test conditions

To validate the performance of the proposed perceptual feature guided RDO scheme, it
has been integrated into the HEVC reference software (i.e., HM10.0 HM (2013)). All test
video sequences are in YCbCr 4:2:0 format with various resolutions and video contents.
The performance is tested under the standard Low Delay with IBBB structure setting and
Random Access setting Bossen (2012). Moreover, the RDO is enabled and the quantization
parameter (QP) value is set as 22, 27, 32, and 37.

To evaluate the perceptual RDperformance, some commonly-usedwell-known perceptual
quality metrics---SSIM Wang et al. (2004), Gradient Magnitude Similarity Mean (GMSM),
Gradient Magnitude Similarity Deviation (GMSD) Xue et al. (2014) are used to measure
the perceptual quality of the reconstructed video instead of the traditional objective metric—
PSNR, as they have been demonstrated their superiority on the perceptual quality assessment.
Note that the higher SSIM and GMSM values and the lower GMSD value indicate the better
perceptual quality. Similar to PSNR, the perceptual quality of the video is obtained by simply
averaging the corresponding perceptual metric value computed on each frame. Furthermore,
the proposed method is compared with the original RDO in the HEVC. The average dif-
ference between their perceptual rate-distortion (RD) curves is measured according to the
method in Bjontegaard (2001), the performance index �BR is used to measure the total bit
rate changes (in percentage) under the same perceptual distortion measured in terms of dif-
ferent perceptual quality metrics (i.e., SSIM, GMSM, GMSD), and the performance indexs
�SSI M , �GMSM , �GMSD are used to measure the perceptual quality changes under
the same bit rates.
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Table 2 The perceptual RD performance comparison in terms of SSIM

Sequence Resolutions Low delay (%) Random access (%)

ΔBR(%) ΔSSIM ΔBR(%) ΔSSIM

BasketballPass 416×240 −7.00 0.0046 −7.05 0.0045

RaceHorses 416×240 −1.94 0.0015 −1.93 0.0015

BQSquare 416×240 −10.06 0.0046 −6.77 0.0036

BlowingBubbles 416×240 −1.40 0.0009 −2.16 0.0016

BQMall 832×480 −4.32 0.0011 −3.12 0.0009

PartyScene 832×480 −4.58 0.0012 −2.78 0.0012

BasketballDrill 832×480 −8.72 0.0038 −6.75 0.0029

RaceHorses 832×480 0.25 −0.0005 0.12 0.0003

FourPeople 1280×720 −5.08 0.0005 −1.53 0.0002

KristenAndSara 1280×720 0.27 0 −1.62 0.0002

BasketballDrive 1920×1080 −7.69 0.0012 −6.57 0.0011

Kimonol 1920×1080 −4.17 0 −1.35 0.0001

ParkScene 1920×1080 −3.34 0.0009 −3.52 0.0009

BQTerrace 1920×1080 −17.11 0.0009 −12.68 0.0007

Cactus 1920×1080 −8.19 0.0006 −23.07 0.0008

Traffic 2560×1600 −6.77 0.0009 −10.88 0.0008

PeopleOnStreet 2560×1600 −15.34 0.0012 −8.94 0.0008

Average −6.18 0.0014 −5.92 0.0013

4.2 Perceptual RD performance comparison

Tables 2 and 3 and 4 individually show the performance of the proposed perceptual feature
guided RDO method for the HEVC in terms of SSIM, GMSM and GMSD, compared with
the original RDO in HEVC. Moreover, the perceptual RD curves of some test sequences
“BQTerrace” (1920×1080) and “BQSquare” (416×240) under the low delay and random
access settings are shown in Figs. 4 and 5 as examples, respectively. One can see from these
tables and figures that the proposed perceptual feature guided RDOmethod is able to achieve
a much better perpetual RD performance under both low delay and random access settings,
comparedwith the original RDO inHEVC. To bemore specific, bymaintaining the same per-
ceptual quality measured in terms of SSIM, GMSM and GMSD, 6.18%, 12.72%, 19.80%
bit rate reduction for low delay setting and 5.92%, 9.92%, 16.24% bit rate reduction for
random access setting can be achieved by the proposed method. Meanwhile, with the same
bit rate, the proposed method can obtain 0.0014 SSIM, 0.0074 GMSM improvement and
0.0096 GMSD decrement for low delay setting and 0.0013 SSIM, 0.0058 GMSM increment
and 0.0078 GMSD decrement for random access setting. Moreover, to have a clearer demon-
stration, Figs. 6 and 7 show two examples of the reconstructed video frame by the original
RDO in HEVC and the proposed method under low delay setting and random access set-
ting, respectively. It can be easily observed that compared with the original RDO in HEVC,
the proposed method can effectively reduce the bits while keeping the similar perceptual
quality.
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Table 3 The perceptual RD performance comparison in terms of GMSM

Sequence Resolutions Low delay (%) Random access (%)

ΔBR(%) ΔGMSM ΔBR(%) ΔGMSM

BasketballPass 416×240 −14.49 0.0124 −13.18 0.0108

RaceHorses 416×240 −4.05 0.0025 −3.52 0.0021

BQSquare 416×240 −17.22 0.0147 −9.48 0.0115

BlowingBubbles 416×240 −3.15 0.0013 −3.14 0.0012

BQMall 832×480 −9.52 0.0047 −7.07 0.0034

PartyScene 832×480 −5.74 0.0022 −5.76 0.0024

BasketballDrill 832×480 −10.62 0.0074 −8.50 0.0060

RaceHorses 832×480 −7.25 0.0043 −7.49 0.0037

FourPeople 1280×720 −18.19 0.0072 −11.01 0.0055

KristenAndSara 1280×720 −13.62 0.0081 −13.53 0.0073

BasketballDrive 1920×1080 −10.52 0.0055 −11.49 0.0059

Kimonol 1920×1080 −6.11 0.0029 −6.16 0.0030

ParkScene 1920×1080 −18.49 0.0122 −12.59 0.0084

BQTerrace 1920×1080 −34.85 0.0142 −24.10 0.0105

Cactus 1920×1080 −12.45 0.0054 −10.39 0.0052

Traffic 2560×1600 −11.32 0.0106 −11.36 0.0063

PeopleOnStreet 2560×1600 −18.72 0.0099 −10.77 0.0095

Average −12.72 0.0074 −9.92 0.0058

Table 4 The perceptual RD performance comparison in terms of GMSD

Sequence Resolutions Low delay (%) Random access (%)

ΔBR (%) ΔGMSD ΔBR (%) ΔGMSD

BasketballPass 416×240 −15.70 −0.0124 −13.83 −0.0176

RaceHorses 416×240 −5.43 −0.0032 −4.42 −0.0026

BQSquare 416×240 −19.28 −0.0175 −10.80 −0.0139

BlowingBubbles 416×240 −4.89 −0.0022 −3.17 −0.0015

BQMall 832×480 −12.82 −0.0058 −7.89 −0.0037

PartyScene 832×480 −7.41 −0.0035 −8.14 −0.0042

BasketballDrill 832×480 −12.49 −0.0078 −9.64 −0.0063

RaceHorses 832×480 −9.82 −0.0041 −19.71 −0.0110

FourPeople 1280×720 −26.60 −0.0091 −19.00 −0.0075

KristenAndSara 1280×720 −51.83 −0.0103 −49.04 −0.0085

BasketballDrive 1920×1080 −14.26 −0.0058 −14.40 −0.0059

Kimonol 1920×1080 −11.18 −0.0042 −10.27 −0.0039

ParkScene 1920×1080 −34.85 −0.0019 −20.91 −0.0122

BQTerrace 1920×1080 −50.72 −0.0256 −35.62 −0.0173

Cactus 1920×1080 −20.59 −0.0075 −20.27 −0.0071

Traffic 2560×1600 −15.01 −0.0123 −12.75 −0.0071

PeopleOnStreet 2560×1600 −23.69 −0.0123 −13.22 −0.0106

Average −19.80 −0.0096 −16.24 −0.0078
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Fig. 4 The perceptual RD curves of test sequences “BQTerrace” and “BQSquare” under low delay setting

4.3 Discussion

To further explain the logical behind the proposed method, taking the sequence “Basketball-
Pass” under the random access setting as an example, Fig. 8 shows the λ value used by the
original RDO in HEVC and the proposedmethod, and the corresponding reconstructed video
frames. One can see that the λ value in the RDO of HEVC is the same for all the CTUs,
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Fig. 5 The perceptual RD curves of test sequences “BQTerrace” and “BQSquare” under random access
setting

which is only related to the QP as shown in (2). It means that the RDO in HEVC ignores
the perceptual characteristics of the video content. Hence, to improve the perceptual coding
efficiency, the proposed perceptual feature guided RDO takes the perceptual characteristic
of each CTU into account during the encoding process. To be more specific, the perceptual
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Fig. 6 The reconstructed video frames—“Cactus” (23rd frame, QP=22) under low delay setting a original
HEVC(SSIM:0.9956,GMSM:0.9005,GMSD:0.1694, bits: 260,504bits);bproposedmethod (SSIM: 0.9952,
GMSM: 0.9056, GMSD: 0.1762, bits: 221,536bits)

Fig. 7 The reconstructed video frames—“BasketballPass” (9th frame, QP=22) under random access setting:
a original HEVC (SSIM: 0.9747, GMSM: 0.9610, GMSD: 0.0949, bits: 4568bits); b proposedmethod (SSIM:
0.9742, GMSM: 0.9609, GMSD: 0.096, bits: 3480bits)

(a) (b) (c)

(d) (e) (f)

Fig. 8 Sequence “BasketballPass”( 416×240, 2nd frame) under random access setting: a the original video
frame; b λ value used in original HEVC; c the reconstructed video frame by the original HEVC (GMSD:
0.09248, bits: 41,736bits); d the perceptual characteristic PC value computed by the proposed method; e λ

value used in the proposed method; f the reconstructed video frame by the proposed method (GMSD: 0.09244,
bits: 38,960bits)
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characteristic of each CTUwill be firstly evaluated according to Eq. (12). Then, the CTUwith
larger PC value, which is less perceptual sensitive, will be assigned with larger λ to allocate
less bits, and vice versa. This can be further verified by Fig. 8 that the proposedmethod is able
to assign different λ value to different CTUs according to their PC values. Consequently,
the perceptual RD performance by the proposed method is effectively improved, compared
with the original RDO in HEVC.

5 Conclusion

In this paper, a perceptual feature guided RDO is proposed for HEVC to improve its percep-
tual coding performance. In our approach, the perceptual features for each CTU are firstly
extracted and then integrated into the RDO process by perceptually adjusting the Lagrangian
multiplier. The perceptual coding gain by the proposed method is achieved by the adaptive
bit allocation for each CTU based on its perceptual characteristic. Experimental results show
that the proposed method is able to obtain significant improvement on perceptual RD per-
formance and visual quality of the reconstructed video, compared with the original RDO in
HEVC.
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