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Abstract— In this paper, an accurate full-reference image
quality assessment (IQA) model developed for assessing screen
content images (SCIs), called the edge similarity (ESIM), is pro-
posed. It is inspired by the fact that the human visual
system (HVS) is highly sensitive to edges that are often encoun-
tered in SCIs; therefore, essential edge features are extracted and
exploited for conducting IQA for the SCIs. The key novelty of
the proposed ESIM lies in the extraction and use of three salient
edge features—i.e., edge contrast, edge width, and edge direction.
The first two attributes are simultaneously generated from the
input SCI based on a parametric edge model, while the last one
is derived directly from the input SCI. The extraction of these
three features will be performed for the reference SCI and the
distorted SCI, individually. The degree of similarity measured
for each above-mentioned edge attribute is then computed
independently, followed by combining them together using our
proposed edge-width pooling strategy to generate the final ESIM
score. To conduct the performance evaluation of our proposed
ESIM model, a new and the largest SCI database (denoted as
SCID) is established in our work and made to the public for
download. Our database contains 1800 distorted SCIs that are
generated from 40 reference SCIs. For each SCI, nine distortion
types are investigated, and five degradation levels are produced
for each distortion type. Extensive simulation results have clearly
shown that the proposed ESIM model is more consistent with
the perception of the HVS on the evaluation of distorted SCIs
than the multiple state-of-the-art IQA methods.

Index Terms— Image quality assessment (IQA), screen content
images (SCIs), edge modeling, edge direction.
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I. INTRODUCTION

IN THE era of multimedia communications, mobile and
cloud computing, and the Internet of Things, the contents

of digital images are no longer just limited to natural scenes.
In fact, the contents of digital images nowadays can have a
mixture of sources, such as natural scene, computer-generated
graphics, texts, charts, maps, user’s hand-writing and -drawing,
and even some special symbols or patterns (e.g., logo, bar
code, QR code) imposed and rendered by an electronic
device or a photo editing software. Such kind of images is
denoted as the screen content images (SCIs) [1], [2], and
they are frequently encountered in various multimedia appli-
cations and services, such as online news and advertisement,
online education, electronic brochures, remote computing,
cloud gaming, to name a few [3]. It has been observed that the
SCIs can yield fairly different image characteristics compared
to that of natural images [4]. Refer to Fig. 1 for some SCI
examples. One can see that the image contents of SCIs tend
to have radical changes due to sharp region transitions and
texts; all these lead to abundant of edges [5].

One critical issue associated with the SCIs is: how to con-
duct objective image quality assessment (IQA) for this kind of
images? The objectiveness here means that the measurements
yielded from the developed IQA model should be consistent
with the judgment made by the human visual system (HVS).
Since the majority of existing IQA models are developed
for natural images, they cannot be exploited to accurately
evaluate the SCI perceptual quality. For that, a new IQA model
for the evaluation of SCIs is proposed in this paper, called
the edge similarity (ESIM). Note that, besides being used
for perceptual quality assessment, an IQA model for SCIs
can be also exploited as an effective performance index to
guide the development of various SCI-based image process-
ing algorithms (e.g., coding, interpolation, super-resolution,
enhancement, and so on). In what follows, related works of
existing IQA models will be succinctly discussed.

A comprehensive overview of the current IQA methods can
be found in [6]. On the evaluation of natural images, the sim-
plest and commonly-used IQA models are the peak signal-
to-noise ratio (PSNR) and the mean square error (MSE).
However, it is well-recognized that these two models often lead
to inconsistent measurements, compared with the judgments
made by the HVS, since the PSNR and MSE only consider
the differences of the pixel intensities [7], [8]. To address
this problem, much effort has been devoted to incorporate
the properties of the HVS into the design of IQA model.
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Fig. 1. Nine screen content images (SCIs) selected from our newly
established SCI database (containing nearly 2,000 images) for demonstrations.

A milestone work in line with this goal is the structural
similarity (SSIM) [8]. It considers the degradations incurred
on image’s structure, instead of pixel differences, based on the
fact that the HVS is highly sensitive to the image’s structural
information.

Further consider that the HVS is highly sensitive to image
contents that have strong edges and contours, the edge infor-
mation extracted from the image can be utilized for the
development of the IQA models (e.g., [9]–[14]). For example,
Zhang et al. [12] proposed an IQA model by measuring the
degree of similarity on edge strength (ES). Inspired by SSIM,
Liu et al. [13] used the gradient similarity to measure the
changes in contrast and structure to perform image quality
assessment. Xue et al. [14] further utilized the gradient
magnitude similarity (GMS) to capture the image local quality
and then exploit the standard deviation computed on the GMS
map as the quality index. Besides, various perceptual fea-
tures, e.g., visual saliency [15], information fidelity [16], [17],
biologically inspired features [18], [19] and various compu-
tational strategies, such as, multi-scale analysis [20], multiple
kernel learning [21], support vector regression [22], extreme
learning machine [23], deep learning [24]–[28], and so on, are
employed in the design of the IQA models.

Among the existing literatures on the topic of the IQA
models, most of them were proposed for evaluating the per-
ceptual quality of the natural images. Obviously, these models
are not suitable for conducting the quality evaluation of the
SCIs, as the image structures and statistical properties of the
SCIs are normally quite different from that of the natural
images. For conducting the perceptual quality assessment
of the SCIs, Wang et al. [29] proposed an IQA model by
incorporating visual field adaptation and information content
weighting. Yang et al. [1] considered the visual difference
of the textual and pictorial regions. Gu et al. [30] proposed
to weight the classical SSIM with a structural degradation
measurement. In this paper, a novel and accurate full-reference
IQA model for conducting objective evaluations of SCIs is
proposed, called the edge similarity (ESIM). The key novelty
of the proposed ESIM lies in the extraction and use of edge

information, since a typical SCI contains abundant of edge
information, and the HVS is highly sensitive to such type of
information. For that, three salient edge attributes—i.e., edge
contrast, edge width, and edge direction, will be extracted
from the reference SCI and the distorted SCI, individually.
The first two attributes are simultaneously generated from a
parametric edge model [31], while the last one is directly
derived from each SCI. The degree of similarity of each above-
mentioned edge attribute is then measured independently, and
the obtained three similarity maps are then combined using
our proposed edge-width pooling strategy to generate the final
ESIM score.

Another significant contribution presented in this paper
is our newly established SCI database (denoted as SCID)1.
Our established SCID is much larger than the only available
SCI database, SIQAD [1]. It contains 40 reference SCIs and
their generated 1,800 distorted SCIs. Nine different types of
distortions are considered with 5 degradation levels generated
for each distortion type. This SCID database can be served as
the ‘ground truth’ to quantitatively assess how accurate of the
proposed IQA model compared with that of existing state-of-
the-art models on the evaluation of SCIs.

Compared with our previous work [32], the proposed
ESIM model incorporates an additional edge attribute—edge
direction for conducting SCI quality assessment. Secondly,
the complementary behaviors of the three edge attributes
(i.e., the edge width, the edge contrast, and the edge direction)
for SCI quality assessment are investigated and demonstrated.
Thirdly, a new SCI database is established and extensive
simulation are conducted using our established SCI database
(i.e., SCID) and SIQAD [1]. Simulation results demonstrate
that our proposed model outperforms the existing state-of-the-
art IQA models.

The remaining of this paper is organized as follows.
In Section II, the proposed SCI quality assessment model
using edge similarity is presented in detail. In Section III,
a newly established SCI database is presented. In Section IV,
extensive performance evaluation of the proposed IQA model
and other state-of-the-art IQA models based on public database
and our established database are performed and compared.
Finally, Section V draws the conclusion.

II. ESIM: PROPOSED EDGE-SIMILARITY-BASED IQA
MODEL FOR SCI QUALITY ASSESSMENT

A. Overview

The proposed IQA model, edge similarity (ESIM), is used
for conducting an objective image quality evaluation of a
given distorted SCI, with respect to its reference SCI. The
flowchart of the proposed ESIM algorithm is shown in Fig. 2,
which consists of three processing stages. Each stage will be
detailed in the following subsections, respectively. Before that,
we would like to highlight the main points of each stage as
follows.

1SCID, [Online]. Available: http://smartviplab.org/pubilcations/SCID.html
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Fig. 2. The framework of the proposed edge similarity (ESIM) score computation algorithm. The acronyms, ECM, EWM and EDM, as shown in Stage 1
denote the edge contrast map, the edge width map, and the edge direction map, respectively. In Stage 2, the acronyms ECS, EWS, and EDS are the abbreviations
for the edge contrast similarity, the edge width similarity, and the edge direction similarity (EDS), respectively.

In the first stage, a parametric edge model [31] is used to
extract two salient edge attributes, edge contrast and edge
width, and this process will be applied to the distorted SCI
and the reference SCI, respectively. This modeling process
will be conducted at each pixel location, individually and
independently. As a result, the extracted edge contrast and
edge width information are expressed in terms of maps—i.e.,
the edge contrast map (ECM) and the edge width map (EWM),
respectively. It is important to note that these maps have the
same size as that of the input image. In addition, the edge
direction, which is another salient edge feature, is considered
and incorporated into our proposed IQA model. The edge
direction map (EDM) will be generated directly from each
SCI via our proposed edge direction computation method.

In the second stage, the computed edge feature maps, one
from the reference SCI and the other from the distorted SCI,
will be compared to yield their edge similarity measurement.
For example, the two ECMs, respectively obtained from the
distorted SCI and the reference SCI, will be compared to
arrive at the edge contrast similarity (ECS) map. Likewise,
the edge width similarity (EWS) map and edge direction simi-
larity (EDS) map will be generated based on the corresponding
pair of EWMs and EDMs, respectively. The three generated
similarity measurement maps will be combined to yield one
measurement map, which is used as the input of the third,
and the last, stage to compute the final ESIM score using our
proposed edge-width-based pooling process.

B. Stage 1: Computation of Three Edge-Feature Maps

1) Edge Contrast Map (ECM) and Edge Width Map (EWM):
Since the HVS is highly sensitive to edges, a parametric
edge model [31] is employed to model each input SCI for
extracting its edge information; to be specific, edge contrast
and edge width.

To model an ideal step edge, centered at the location x = x0,
this can be mathematically expressed as

u(x; b, c, x0) = c · U(x − x0)+ b, (1)

Fig. 3. An illustration of a practical edge model s(x; b, c, w, x0) with an
edge incurred at the location x = x0, where c is the contrast parameter, w is
the width parameter, and b is the basis parameter [31].

where U(·) denotes the unit-step function, c represents the
edge contrast, and b is the basis (i.e., luminance intensity at the
lower side of the edge contrast). Generally speaking, a typical
edge has a smooth transition, rather than a unit-step like sharp
edge. Therefore, a practical edge model, s(x; b, c, w, x0),
as illustrated in Fig. 3 can be obtained by convolving the ideal
edge model (i.e., the unit-step edge as expressed in (1)) with
the Gaussian kernel g(x;w), where w is the standard deviation
that is used to model the edge width; that is,

s(x; b, c, w, x0) = u(x; b, c, x0)⊗ g(x;w)
= u(x; b, c, x0)⊗ 1√

2πw2
exp

(−x2

2w2

)

= b + c

2

[
1 + erf

(
x − x0√

2w

)]
, (2)

where the symbol “⊗” denotes the convolution operation,
erf(·) is the error function. Note that any edge can be modelled
by this parametric edge model as shown in Fig. 3 via a
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three-parameter set—i.e., the contrast c, the width w, and
the basis b. The parameter c determines the edge contrast
(i.e., the strength of the edge); the larger the c, the stronger
the edge contrast. The parameter w governs the edge width;
the smaller the value, the sharper the edge transition. (That
is, the ideal unit-step edge has a zero edge width.) Lastly,
the parameter b conveys whether the above-mentioned edge
occurs in a brighter region (i.e., a larger b) or in a darker
region (i.e., a smaller b). Now, the key issue is how to
determine these three parameters, b, c, and w, for each edge
model centered at a local position, x = x0.

Intuitively, these parameters can be derived by using the
local pixel information near the edge center x = x0. For
that, the edge center should be detected and localized firstly.
It can be realized by simply taking the local maxima of
the first derivative of the Gaussian smoothed step edge
s(x; b, c, w, x0). To prevent such derivation being conducted
on those pixel locations involving noise, it is effective to
convolve the s(x; b, c, w, x0) with a Gaussian kernel first
before taking the derivatives. By exploiting the well-known
fact that ( f1(x)⊗ f2(x))′ = f1(x)⊗ f ′

2(x), where the symbol
“⊗” denotes the convolution operation of two given functions
f1(x) and f2(x), the above-mentioned two operations (i.e.,
convolution and then derivation) can be realized by performing
the convolution of the s(x; b, c, w, x0) with the derivative of
the Gaussian filter g′(x; σd) and arrives at [31]

d(x; c, w, σd , x0)= c√
2π(w2+σ 2

d )
exp

[
−(x −x0)

2

2(w2+σ 2
d )

]
. (3)

Since we have three parameters required to be solved,
thus we need to have three equations to solve them. For
that, we shall sample d(x; c, w, σd , x0) at three locations
x = 0, a, and −a, where a is the sampling distance, and
it can be chosen freely (for that, a = 1 is used in this
paper). Based on the above-mentioned three locations,
denote d1 = d(0; c, w, δd , x0), d2 = d(a; c, w, δd , x0), and
d3 = d(−a; c, w, δd, x0), for x = 0, x = a, and x = −a,
respectively. The three parameters of the edge model can be
derived as [31]:

c = d1 ·
√

2πa2/ ln(l1) · l
1

4a
2 , (4)

w =
√

a2/ ln(l1)− σ 2
d , (5)

b = s(x0)− c

2
, (6)

where l1 = d2
1/(d2d3) and l2 = d2/d3.

Resulted from the above-described edge modeling process,
which is performed at each pixel location, all the computed
values of parameters c and w can be separately grouped and
formed as a ‘map’ for each parameter, respectively. Thus,
the established edge contrast map (ECM) and edge width
map (EWM) are two extracted salient edge information, and
this process will be applied to the distorted SCI and the
reference SCI individually. These edge-feature maps will be
served as the inputs to the subsequent Stage 2 for conducting
edge similarity measurement (refer to Fig. 2).

To demonstrate the effectiveness of the edge model [31]
on the extraction of salient edge attributes from the SCIs,
a test SCI was selected from the SIQAD database [1] as shown
in Fig. 4 (a). This image is served as the reference SCI for
the quality assessment against each distorted SCI as shown
in Fig. 4 (e) and (i); all are locating in the first column in Fig. 4.
Note that Fig. 4 (e) contains motion blur, while Fig. 4 (i)
is a JPEG compressed version of Fig. 4 (a). The computed
ECMs and EWMs based on these three SCIs are presented in
columns 2 and 3 of Fig. 4, respectively. Comparing Fig. 4 (b)
and (f) for example, it can be easily observed that a significant
amount of edge information and texture information got lost
due to motion blur, as expected. This shows that the edge
modeling process reflects the edge information quite well.

2) Edge Direction Map (EDM): It has been noticed that
edge direction is another salient edge attribute that can be
beneficial to the SCI quality assessment. This is motivated by
the fact that the visual cortical neurons are highly sensitive
to edge direction [33]–[35]. Similar to ECM and EWM,
the edge direction map (EDM) needs to be computed, which
is described as follows.

Let I (x, y) denote the luminance component of the input
SCI under consideration. Define G H and GV are the direc-
tional derivatives computed along the horizontal and vertical
directions, respectively, as follows:

G H = I (x + 1, y)− I (x, y)

GV = I (x, y + 1)− I (x, y). (7)

The local gradient magnitude measured at the location (x, y),
which is denoted as G(x, y), is defined as

G(x, y) = |G H | + |GV |. (8)

Note that the l1 norm is used here, rather than l2 norm,
since the total amount of gradient changes (regardless the
involved directions) is an effective impetus to the HVS and

|G H | + |GV | ≥
√

G2
H + G2

V . It turns out that this leads
to better performance according to our extensive simulation
results. Based on (8), the obtained edge gradient map will
be convolved with the kernel Ll at the lth direction, for
l ∈ {0, . . . , 11}; that is,

E DMl (x, y) = Ll ⊗ G(x, y), (9)

where the symbol “⊗” denotes the convolution operator. Note
that the convolution kernel Ll is obtained by rotating the
convolution kernel L0 with an angle of l × π

12 . Here, L0 is
a matrix with a size of 27×27, and it is exploited as a
convolution kernel operating along the horizontal direction.
In this 27×27 matrix, all the entries in the middle row of L0
have a constant value 1, and the value of 0 for the remaining
entries.

Lastly, the final E DM(x, y) will be generated based
on the twelve E DMl (x, y) by simply identifying which
map (associating with a fixed direction) has yielded the largest
value (or response) at each pixel location (x, y); that is,

E DM(x, y) = n × π

12
, (10)
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Fig. 4. An example of edge contrast map (ECM), edge width map (EWM) and edge direction map (EDM) of an SCI and its two distorted versions. [Column
1]: (a) an original or reference SCI; (e) a distorted SCI resulted from motion blur; (i) a distorted SCI resulted from JPEG compression. [Columns 2 to 4]:
their corresponding ECM, EWM, and EDM, respectively.

where

n = arg max
l

{E DMl (x, y)}, l ∈ {0, . . . , 11}.
It is important to remark that the commonly-practiced

approach for finding the angle is based on arctan ( GV
G H
),

which is quite simple and straightforward. However, compared
with arctan ( GV

G H
), our proposed approach adopts a larger

neighborhood of the current pixel, and thus can be more
accurate and stable to depict the edge direction. Therefore,
our proposed approach is employed to explore the important
edge attribute (i.e., edge direction) for SCI perceptual quality
assessment. For a demonstration of EDM, refer to the last
column in Fig. 4.

C. Stage 2: Computation of Three Edge Similarity
Measurements

This subsection is about the second stage in Fig. 2. For
ease of notation and paper development, denote the reference
SCI as r and its distorted version as d; both are added
on the subscript. The computed similarity measurements
for the concerned three edge attributes are called the edge
contrast similarity (ECS), the edge width similarity (EWS),
and the edge direction similarity (EDS), respectively. These
measurements are computed by following the same practice as
proposed in [8] on the computation of the degree of similarity,

which is also commonly adopted in other IQA models
(e.g., [10], [13], [14], [36]). In summary, the above-
mentioned three similarity measurements can be computed
according to the following format:

sψ(ψr , ψd , Tψ) = 2ψrψd + Tψ
ψ2

r + ψ2
d + Tψ

, (11)

where the symbol ψ can be ECM, EWM, or EDM, and the
subscript of ψr and ψd indicates whether the involved SCI
is the reference (i.e., r ) or the distorted (i.e., d) SCI. Tψ is
a positive constant that is used to prevent from numerical
fluctuation. Finally, the obtained sψ(·) is the final similarity
measurement map, and it could be the EC S, EW S, or E DS.
Note that each computed value of sψ(ψr , ψd , Tψ) should be
falling in the range of (0, 1].

By following the same practice as suggested in [8], the total
edge similarity measurement, denoted as S(x, y), can be
computed by simply multiplying these three maps together
as (refer to Fig. 2)

S(x, y) = [EC S(x, y)]α · [EW S(x, y)]β · [E DS(x, y)]γ ,
(12)

where α, β, and γ are three positive constants that can be used
to adjust the relative importance of EC S(x, y), EW S(x, y)
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and E DS(x, y). By simply treating these three measurements
equally important, α = β = γ = 1 is set in our work.

D. Stage 3: Edge-Width-Based Pooling

This subsection is about the third, and the last, processing
stage as outlined in Fig. 2 that will yield the final edge simi-
larity (ESIM) score. Instead of simply taking an average over
the combined edge attributes map S(x, y), intuitively a proper
weighting process should be considered, as all image pixels
are not equally perceived by the HVS. For that, we have
investigated several different edge attributes for weighting.
It turns out that the edge width information is the most
effective data field to be incorporated for weighting. This
is probably due to the fact that the HVS perception is very
sensitive to edge structure, which is intimately related to edge
width [2].

To fulfill the above-mentioned goal, a simple and yet effec-
tive weighting factors can be designed based on the existing
data field, EWM, as follows. If the pixel location (x, y) of
either the original or distorted SCI has incurred a large edge
width w (be it in the reference SCI or the distorted SCI),
it means that HVS will be quite sensitive to this position.
Therefore, denote EW Mr and EW Md be the edge width maps
of SCIs r and d , respectively. The maximum edge width value
based on these two maps can be utilized as the weighting
factor; that is,

W (x, y) = max(EW Mr , EW Md ). (13)

Therefore, the IQA score, which is termed as the edge
similarity (ESIM) score, can be computed ‘pooled’ through
the weighted average as

E SI M =

∑
(x,y)

W (x, y) · S(x, y)

∑
(x,y)

W (x, y)
, (14)

where the weighted average is carried out in all pixel
locations (x, y).

III. PROPOSED SCREEN CONTENT

IMAGE DATABASE (SCID)

A. Methodology on Building Our SCI Database

Our developed SCI database (denoted as SCID) contains
40 reference SCIs and 1,800 distorted versions rendered from
these reference SCIs. The 40 reference SCIs were thoughtfully
identified from the Internet, and they cover a wide variety
of image contents, including texts, graphics, symbols, pat-
terns, and natural images. The sources of these SCIs could
come from the web pages, PDF files, power-point slides,
comics, digital magazines (via screen snapshots), and so on.
All the selected reference SCIs are cropped to a fixed size
in 1280×720. For demonstration, few reference SCIs from
our database are shown in Fig. 1.

Since various types of distortions could be inevitably intro-
duced on SCIs during the acquisition, processing, compres-
sion, transmission, and display stages, our SCID database
includes 9 types of distortions that are often encountered

in practical applications. For each distortion type, 5 levels
of degradations (ranging from imperceptible level to highly-
annoying one) are generated and included in our database.
As a result, we have produced 1,800 distorted SCIs for our
database. These 9 types of distortions include: noisy SCIs with
three types of noise considered—i.e., the Gaussian noise (GN),
the Gaussian blur (GB), and the motion blur (MB), as they are
often encountered on the transmission stages.

Since the HVS is sensitive to image contrast, defined as
the pixel-intensity difference yielded between the darkest and
the brightest areas within the image, the contrast change (CC)
is introduced as another type of distortion considered in our
SCID database. Furthermore, color saturation change (CSC)
and color quantization with dithering (CQD) are also important
to include. The CC, CSC, and CQD are quite likely resulted
from color rendering and screen sharing among different
display devices with different brightness and contrast.

Besides, distortion caused by compression is also often
encountered on image. For that, we consider the JPEG
and JPEG2000 (J2K) image compression standards, as they
are often used to encode still color images. Moreover,
the latest video compression standard, high efficiency video
coding (HEVC) [37], [38], is also considered, since the
HEVC has recently added the screen content coding (SCC)
as its extension, denoted as HEVC-SCC. Thus, the distorted
still image frames resulted by applying the HEVC-SCC are
also included in our database.

B. Methodology on Conducting Subjective Test

As specified in ITU-R BT.500-13 [39], subjective test
procedures aim at assessing the quality of television pictures
via two approaches: single stimulus and double stimulus.
The single stimulus approach only presents a single image
to the assessors and seeks their opinion scores. Obviously,
the single stimulus approach is straightforward and simple on
performing subjective test [40]. On the other hand, the double
stimulus approach seeks the assessor’s subjective evaluation
on the assessment of the quality difference yielded between
the reference image and the distorted image. Compare to
the single stimulus method, the opinion scores resulted from
double stimulus method are more reliable [39], [41]. For
that, the double stimulus impairment scale (DSIS) method is
employed in our work using five discrete scales (from 1 to 5)
for each specific type of distortion under consideration. Note
that both the reference SCI and the distorted SCI are pre-
sented to the assessors for 10 seconds each with a mid-
grey presentation inserted in between. Note that the higher
the score, the better the perceptual quality is deemed. The
desktop PCs were used as the evaluation test beds. Each
is equipped with a 23-inch LED monitor (with a resolution
of 1920×1080), 8 GB RAM, and 64-bit Windows operating
system. The evaluation process is conducted indoors, under a
normal lighting condition.

It is essential and informative to describe how these evalua-
tion tests were carried out in order to judge how objective and
useful of our established database and the obtained evaluation
results. For that, several training sessions were held to instruct
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Fig. 5. A screenshot of a graphical user interface for conducting subjective
evaluation.

all the assessors about the rules and procedures on how to
conduct the subjective evaluation of the distorted SCIs. Each
distorted SCI presented to the assessor will be judged as
one of five opinion levels (together with their corresponding
definitions) as shown in Fig. 5. All these information are
located at the bottom right of the window. There are 186 asses-
sors, including 104 males and 82 females. All assessors are
students (with ages ranging from 18 to 27), and they do not
have any background or experience in image processing so
as to avoid bias as much as possible. According to [39],
the time spent on one evaluation session should not exceed
30 minutes to avoid fatigue that might affect scores’ accuracy.
Therefore, the entire 1,800 distorted SCIs were randomly and
non-overlappingly divided into 10 sessions (i.e., 180 images
per session) for conducting subjective test. In each session,
no two consecutive SCIs to be evaluated in sequence are
the same, nor their distortion types and levels of distortion.
Each assessor was randomly assigned with two sessions of
SCIs on average (with three sessions at most) for conducting
their subjective evaluation, and each SCI is evaluated by at
least 40 assessors. Moreover, the assessors had been instructed
to take a break after 30 minutes of evaluation work to
avoid fatigue that might lead to unreliable scores. Finally,
the subjective ratings of 430 evaluation sessions are obtained
in total.

C. MOS Computation and Its Reliability Analysis

As above-mentioned, each distorted SCI in our built SCID
database was subjectively evaluated to obtain the correspond-
ing opinion (raw) scores. These scores are required to be
further processed in order to generate the final mean opinion
score (MOS). The obtained MOS for each distorted SCI
can thus be used as the ‘ground truth’ and stored in our
database for evaluating the performance of the proposed IQA
model as well as other classical and state-of-the-art models
for comparison. To make sure that the obtained ground truth
is as reliable as possible, the rules outlined in [39] have been
strictly followed to determine the MOS for each distorted SCI
in our subjective evaluation process.

Although each assessor might have a different interpretation
about the image quality of the SCIs under evaluation,
the majority of assessors should have reached the
same or similar conclusions on the perceptual quality
judgment on each distorted SCI. Therefore, any outlier
existing in the raw subjective scores needs to be identified

and discarded according to the checking procedures described
in [39] before computing the final MOS for each distorted SCI.
Let Si jk be the opinion (raw) score recorded by the assessor i
on evaluating a distorted SCI j (where j = {1, . . . , 180})
from the session k (where k = {1, . . . , 10}). To identify
outliers, an intuitive approach, which is also suggested in [39],
is to compare all the assessors’ raw scores that had been
recorded for the evaluation of the same session k. For each
SCI in this session, the majority of assessors should have
the same or close scores so as to differentiate which are the
outliers to be discarded. Further note that each session k could
have different numbers of assessors involved; for that, let Nk

be the number of assessors who have evaluated the session-k’s
SCIs. First of all, it is essential to ‘normalize’ the recorded
raw scores to yield the so-called Z scores [39] for each SCI
from the session k and across these Nk ’s assessors [42]; i.e.,

Zi jk = Si jk − μ j k

σ j k
, (15)

where

μ j k = 1

Nk

Nk∑
i=1

Si jk ,

σ j k =
√√√√ 1

Nk − 1

Nk∑
i=1

(Si jk − μ j k)2.

After obtaining the Z scores for all Nk ’s assessors, the
kurtosis (denoted as βik ) of the raw-scores of assessor i for
the k-th session will be computed as the yardstick to conduct
the rejection procedures as specified in [39] so as to identify
whether this entire evaluation session (with 180 scores) is
deemed as an un-trustable ‘outlier’ and to be discarded. The
kurtosis βik is measured according to

βik = mik,4

(mik,2)2
, (16)

where

mik,t =
∑Jk

j=1(Si jk − γik)
t

Jk
, for t = 2, 4;

γik = 1

Jk

Jk∑
j=1

Si jk ,

where Jk is the total number of distorted SCIs in the k-th
session, i.e., Jk = 180 presented in this work.

When the computed kurtosis value βik falls between 2 and
4, the distribution of the raw scores are considered to be
normally distributed [39]. Furthermore, each SCI’s raw score
in this evaluation session needs to be checked against the
mean value and standard variation over Nk ’s scores, followed
by some thresholding-based checking steps. The details of
these steps are summarized in the Algorithm 1 [39] as shown
below. By performing the above-mentioned outlier rejection
procedures for each session (from session index 1 to 10),
54 out of 430 evaluation sessions were discarded.

After outlier rejections, the Z scores of each remaining
session should be normally distributed with zero mean and
unit standard deviation (σ = 1) [43]. This means that 99% of
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Algorithm 1 Outlier Rejection Procedures

Fig. 6. The MOS values and their corresponding confidence intervals
(i.e., standard deviation as indicated by the blue-color vertical bars). These
scores were individually measured from 45 distorted SCIs (i.e., 9 distortion
types, with 5 level of degradations each), and these images were generated
from the reference SCI as shown in Fig. 1 (h).

the scores will lie in the range of ±3σ ; i.e., [−3,+3]. To avoid
negative value in our context, all the values are shifted upward
by adding 3, followed by a linear rescaling over the range of
[0, 100]. Therefore, the re-scaled Z scores can be obtained as

Z̃i j k = 100(Zi jk + 3)

6
. (17)

Finally, for each distorted SCI j from the SCI session k, its
MOS value (denoted as MOS j k) is computed as the mean of
the re-scaled Z scores (i.e., Z̃i j k) from (17):

MOS j k = 1

Mk

Mk∑
i=1

Z̃i j k , (18)

where Mk is the number of remaining evaluation sessions after
discarding the identified outliers (i.e., Mk ≤ Nk ). As a result,
the standard deviation of Z̃i j k can be computed as

σ̃ j k =
√√√√ 1

Mk − 1

Mk∑
i=1

(Z̃i j k − M OSjk)2. (19)

The MOS value of each distorted SCI j is included in our
database, which is then served as the ‘ground truth’ to evaluate
the performance of the IQA models.

To demonstrate, 45 distorted SCIs were generated from
Fig. 1 (h), which is chosen as the reference SCI. These
45 images cover all 9 distortion types and with 5 levels of
degradations for each distortion type considered. The corre-
sponding obtained MOS are shown in Fig. 6, where the error
bar indicates the standard deviation computed from (19). One
can see that the distorted SCIs with different distortions types
and levels present different MOS values and similar standard
deviation values. It means that the assessors have reached an
agreement on the SCI perceptual quality. Note that similar
observations can also be found for other distorted SCIs.

Moreover, Fig. 7 (a) illustrates the MOS values of all
1,800 distorted SCIs stored in our SCID database. For better
visualization, in this plot, 1,800 symbols (i.e., performance
points) represents 1,800 distorted SCI and 9 types of symbols
correspond to 9 types of distortion (i.e., GN, GB, MB,
CC, JPEG, J2K, CSC, HEVC-SCC, and CQD) in our SCID
database. Fig. 7 (b) summarized the results in terms of
histogram as a complementary presentation. One can see that
the distribution of MOS values is, generally speaking, quite
even at different quality degradation levels. This indicates
that the constructed SCID obeys the rules that the perceptual
quality in a database should span the entire range of visual
quality from severally annoying to imperceptible with a good
separation [43]. In summary, it is believed that the computed
MOS based on those assessors’ scores (i.e., after outlier
rejection) are reliable and can be further employed for the
evaluation of the IQA models.

IV. EXPERIMENTAL RESULT AND ANALYSIS

A. Database and Evaluation Criteria

In this section, the performances resulted from the proposed
ESIM model and other state-of-the-art models are compared
based on the SIQAD database [1] and our established database
SCID as described in Section III. Note that the SIQAD
database was also established for evaluating the perceptual
quality of the SCIs, and it contains 20 reference SCIs and
their 980 distorted SCIs, involving 7 distortion types as listed
in the second column in Table I—i.e., Gaussian noise (GN),
Gaussian blur (GB), motion blur (MB), contrast change (CC),
JPEG compression, JPEG2000 (J2K) compression, and layer-
segmentation-based coding (LSC). Furthermore, 7 different
levels of degradations have been created for each distortion
type. Our proposed SCID database has 9 distortion types
as listed in the second column in Table II, and 5 levels of
degradations have been created for each distortion type.

It is important to note that the dynamic range of the IQA
scores (denoted as si ) yielded by using a specific model
would be different from that of exploiting another model.
Therefore, it is necessary to map the dynamic range of the
scores produced from each model onto a common scale so
that the mapped scores (denoted as Qi ) can be meaningfully
compared, with respect to the ground-truth scores that have
been stored in the database. For that, the mapping process
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Fig. 7. The profiles of the obtained MOS (i.e., the ‘ground truth’) in our established SCID: (a) Scatter plot of the entire 1,800 distorted SCIs and their
MOS values; (b) Histogram of the MOS values of the entire 1,800 distorted SCIs.

TABLE I

PERFORMANCE COMPARISONS OF DIFFERENT IQA MODELS EXPERIMENTED ON THE SIQAD DATABASE

suggested in the Video Quality Experts Group (VQEG) HDTV
test [44], [45] is exploited. That is,

Qi = β1

[
1

2
− 1

1 + exp [β2(si − β3)]

]
+ β4si + β5, (20)

where si is the perceptual quality score of the i -th distorted
image computed from an IQA model and Qi is the corre-
sponding mapped score. Parameters β1, β2, β3, β4, and β5 are
to be fitted by minimizing the sum of squared errors yielded
between the mapped objective score Qi and the ground truth
value M OSi (for details, see [44] and [45]).

After mapping, three performance evaluation criteria as
suggested in [44] are computed for various IQA mod-
els, respectively. They are the Pearson linear correlation
coefficient (PLCC) for predicting accuracy, the Spearman

rank order correlations coefficient (SROCC) for predict-
ing monotonicity, and the root mean square prediction
error (RMSE) for predicting consistency, as follows.

P LCC =

n∑
i=1
(Qi − Q)(M OSi − M OS)

√
n∑

i=1
(Qi − Q)2(M OSi − M OS)2

,

S ROCC = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)
,

RM SE =
√√√√ 1

n

n∑
i=1

(Qi − M OSi )2, (21)
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TABLE II

PERFORMANCE COMPARISONS OF DIFFERENT IQA MODELS EXPERIMENTED ON OUR ESTABLISHED SCID DATABASE

where n denotes the total distorted images involved in the
evaluation of the IQA model. Parameters M OS and Q are
the mean values of M OSi and Qi , respectively, di is the
difference between the i -th image’s rank in the subjective and
objective evaluations. Lastly, it is important to note that for
the PLCC and SROCC, the larger of their values, the better
the performance. For the RMSE, this trend is reversed; that
is, the smaller the better.

B. Performance Comparison and Analysis

To demonstrate the superiority, the proposed ESIM model is
compared with the classical and several state-of-the-art quality
assessment models, including PSNR, SSIM [8], MSSIM [20],
IWSSIM [46], VIF [16], IFC [17], MAD [47], FSIM (for
gray-scale image) [36], ES [12], GSIM [13], GMSD [14],
VSI [15], SCQI [48], SIQM [30], SPQA [1], SQI [29], and
EMSQA [32], where the last four IQA models are specifically
designed for the evaluation of SCIs, while the rest are all for
assessing natural images. Note that the parameter Tψ of the
proposed ESIM model as shown in (11) needs to be set for
each edge attribute case; i.e., EWM, ECM, and EDM. For that,
a subset of SCIs chosen from SIQAD database, which contains
8 reference SCIs and their 392 distorted versions, are used
for the determination of these parameters. Following the same
practices as suggested in [13] and [15], those parameter values
that lead to higher SROCC will be selected. Through extensive

experiments, the values of Tψ are empirically determined for
EWM, ECM, and EDM as 0.9, 800, and 10, respectively.

Tables I and II document the computed quality assessment
measurements using these methods for the SCIs from the
SIQAD database and our SCID database, respectively. The
best three performance figures of each measurement crite-
rion (i.e., PLCC, SROCC, and RMSE) are highlighted in
boldface, and the best one is further highlighted in red color
for ease of comparison. Note that the program codes of all the
above-mentioned models are downloaded from their original
sources, except for the two SCI ones (i.e., SPQA and SQI).
Therefore, the results of SPQA and SQI experimented on our
established SCID database are not available for being included
in Table II. Moreover, the performance comparisons conducted
on each distortion type are also provided, except for the SQI
for the same reason that does not provide the RMSE result on
each distortion.

From the experimental results documented in
Tables I and II, one can see that the proposed ESIM model
outperforms all the state-of-the-art models under comparison,
as it is able to achieve the highest correlation or consistency
with the subjective quality ratings judged by the HVS. Note
that the proposed ESIM model also significantly outperforms
other state-of-the-art edge-based IQA models; i.e., ES,
GSIM, and GMSD. This reveals that the proposed ESIM
model that exploits three edge attributes (i.e., edge width,
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Fig. 8. Scatter plots of the MOS versus the IQA metrics using our established SCID database: (a) PSNR; (b) SSIM; (c) MSSIM; (d) IWSSIM; (e) VIF;
(f) IFC; (g) MAD; (h) FSIM; (i) GSIM; (j) GMSD; (k) VSI; and (l) Proposed ESIM, respectively. The blue-color line as shown in each sub-plot is obtained
by using a curve fitting procedure according to (20). One can see that the data points on the scatter plot of the proposed ESIM are much closer to this
curve (thus, a better fitting to the curve).

edge contrast, and edge direction) is much more effective to
explore the edge information for conducting SCI perceptual
quality assessment. Another interesting observation is that
all the models specifically designed for the SCI quality
assessment (i.e., SIQM, SPQA, SQI, EMSQA, and our
proposed ESIM) can achieve better performance than those
IQA models developed for the natural images in SIQAD
database. This is mainly due to the fact that they consider
the special characteristics of the SCI on the design of SCI
quality assessment models.

To further visualize the performance yielded by the IQA
models under comparison, Fig. 8 shows the scatter plots of the
subjective scores against the objective scores as predicted by
some representative IQA models (i.e., PSNR, SSIM, MSSIM,
IWSSIM, VIF, IFC, MAD, FSIM, GSIM, GMSD, VSI, and the
proposed ESIM) based on our SCID database for a demonstra-
tion. The curve as shown in each sub-plot of Fig. 8 is obtained
by a nonlinear curve fitting procedure according to (20). One
can see that our proposed ESIM has a ‘tighter’ (thus, better)
curve fitting, compared with that of other IQA models.
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TABLE III

PERFORMANCE RESULTED FROM EACH EDGE ATTRIBUTE
OF THE PROPOSED ESIM MODEL ON THE SIQAD AND

OUR ESTABLISHED SCID DATABASES

To more comprehensively evaluate an IQA index’s ability
to predict image quality degradations caused by specific types
of distortions, we examine the performance of the proposed
ESIM and other state-of-the-art IQA models on each type of
distortions, as shown in Tables I and II. For each distortion
type, the top three performance figures of each measurement
scheme are highlighted in boldface and the best one is further
highlighted in red color. One can see that the proposed
ESIM yield the top performance on most of distortion types.
Moreover, it can be observed that the proposed ESIM model
is able to more accurately assess and reflect the degradations
caused by Gaussian blur (GB), motion blur (MB), JPEG
compression, and JPEG2000 compression particularly. In fact,
this is expected, since blurring and compression artifacts will
inevitably degrade edges and make significant changes on
the extracted edge information, which would be accurately
reflected by the edge attributes used in the proposed ESIM
model. Despite the encouraging performance results achieved
by the proposed ESIM, it has a relatively poor performance
on Contrast change (CC) and Color Saturation Change (CSC).
This is because CC only affects the intensity of image rather
than the image structure while CSC mainly changes the
chrominance component rather than the luminance component.
Future work will include devising a model to predict the
SCI quality by further considering the intensity changes and
chrominance component based on the proposed ESIM model.

Lastly, to analyze how much of the contributions com-
ing from each edge attribute in the proposed ESIM model,
the performance on the evaluation of the SCIs resulted from
each of three edge attributes (i.e., EWS, ECS, and EDS)
are investigated using the SIQAD database and our SCID
database. This can be accomplished by assigning different
values to α, β, and γ in (12). Specifically, for considering
edge width only (i.e., EWS), β = 1 and α = γ = 0; for the
edge contrast only (i.e., ECS), α = 1 and β = γ = 0; and, for
the edge direction only (i.e., EDS), γ = 1 and α = β = 0. The
corresponding experimental results are recorded in Table III.
One can see that each edge attribute achieves relatively good
performances, and the proposed ESIM that jointly explores
three edge attributes performs the best. This investigation
suggests that the edge width, edge contrast, and edge direction
effectively conveys different attributes of edge, and they play
a complementary role to jointly capture the edge properties
well for delivering accurate quality assessment for the SCIs.

V. CONCLUSIONS

In this paper, a novel screen content image (SCI) qual-
ity assessment model, called the edge similarity (ESIM),
is proposed. The novelty of the ESIM lies in the use of
three salient edge attributes—i.e., edge contrast, edge width,
and edge direction, individually extracted from the reference
and distorted SCIs for conducting their respective similarity
measurements, followed by pooling them together to produce
the final ESIM score. Another key contribution in our work is
that a large SCI database (i.e., SCID) is established and served
as the ‘ground truth’ to quantitatively assess how accurate
of the IQA scores computed by the proposed ESIM and
other existing state-of-the-art models on the perceptual quality
assessment of SCIs. Extensive experiments conducted over
an existing SCI database and our established SCID database
have clearly demonstrated that the proposed ESIM model
delivers the highest performance compared to other state-of-
the-art IQA models on providing more accurate and consistent
assessment in accordance with what the HVS perceives and
judges the SCIs.

REFERENCES

[1] H. Yang, Y. Fang, and W. Lin, “Perceptual quality assessment of
screen content images,” IEEE Trans. Image Process., vol. 24, no. 11,
pp. 4408–4421, Aug. 2015.

[2] S. Wang, L. Ma, Y. Fang, W. Lin, S. Ma, and W. Gao, “Just noticeable
difference estimation for screen content images,” IEEE Trans. Image
Process., vol. 25, no. 8, pp. 3838–3851, May 2016.

[3] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC
screen content coding extension,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016.

[4] K. Gu, G. Zhai, W. Lin, X. Yang, and W. Zhang, “Learning a blind
quality evaluation engine of screen content images,” Neurocomputing,
vol. 196, pp. 140–149, Jul. 2016.

[5] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced screen content coding
using color table and index map,” IEEE Trans. Image Process., vol. 23,
no. 10, pp. 4399–4412, Oct. 2014.

[6] W. Lin and C.-C. J. Kuo, “Perceptual visual quality metrics: A survey,”
J. Visual Commun. Image Representation, vol. 22, no. 4, pp. 297–312,
2011.

[7] B. Girod, “What’s wrong with mean-squared error?” in Digital
Images and Human Vision. Cambridge, MA, USA: MIT Press, 1993,
pp. 207–220.

[8] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[9] Z. Ni, L. Ma, H. Zeng, C. Cai, and K.-K. Ma, “Gradient direction for
screen content image quality assessment,” IEEE Signal Process. Lett.,
vol. 23, no. 10, pp. 1394–1398, Aug. 2016.

[10] G. Chen, C. Yang, and S. Xie, “Edge-based structural similarity for
image quality assessment,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., May 2006, pp. 14–19.

[11] W. Xue and X. Mou, “An image quality assessment metric based on
non-shift edge,” in Proc. IEEE Int. Conf. Image Process., Sep. 2011,
pp. 3309–3312.

[12] X. Zhang, X. Feng, W. Wang, and W. Xue, “Edge strength similarity for
image quality assessment,” IEEE Signal Process. Lett., vol. 20, no. 4,
pp. 319–322, Apr. 2013.

[13] A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based
on gradient similarity,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1500–1512, Apr. 2012.

[14] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695, Feb. 2014.

[15] L. Zhang, Y. Shen, and H. Li, “VSI: A visual saliency-induced index
for perceptual image quality assessment,” IEEE Trans. Image Process.,
vol. 23, no. 10, pp. 4270–4281, Aug. 2014.

[16] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.



4830 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017

[17] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information fidelity
criterion for image quality assessment using natural scene statistics,”
IEEE Trans. Image Process., vol. 14, no. 12, pp. 2117–2128, Dec. 2005.

[18] F. Gao and J. Yu, “Biologically inspired image quality assessment,”
Signal Process., vol. 124, pp. 210–219, Jul. 2016.

[19] C. Deng and D. Tao, “Color image quality assessment with biologically
inspired feature and machine learning,” Vis. Commun. Image Process.,
vol. 124, pp. 77440Y-1–77440Y–7, Aug. 2010.

[20] Z. Wang, E. P. Simoncelli, and A. C. Bovil, “Multi-scale structural
similarity for image quality assessment,” in Proc. IEEE Conf. Signals
Syst. Comput., vol. 2. Nov. 2003, pp. 1398–1402.

[21] F. Gao, D. Tao, X. Gao, and X. Li, “Learning to rank for blind image
quality assessment,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 10, pp. 2275–2290, Oct. 2015.

[22] T. Liu, K. Liu, J. Lin, W. Lin, and C.-C. J. Kuo, “A paraboost method
to image quality assessment,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 1, pp. 107–121, Jan. 2017.

[23] S. Wang, C. Deng, W. Lin, G. Huang, and B. Zhao, “NMF-based
image quality assessment using extreme learning machine,” IEEE Trans.
Cybern., vol. 47, no. 1, pp. 232–243, Jan. 2017.

[24] W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1275–1286, Jun. 2015.

[25] W. Zhang, C. Qu, L. Ma, J. Guan, and R. Huang, “Learning structure
of stereoscopic image for no-reference quality assessment with con-
volutional neural network,” Pattern Recognit., vol. 59, pp. 176–187,
Nov. 2016.

[26] F. Gao, Y. Wang, P. Li, M. Tan, J. Yu, and Y. Zhu, “Deepsim: Deep
similarity for image quality assessment,” Neurocomputing, vol. 257,
pp. 104–114, Feb. 2017.

[27] H. Wang, J. Fu, W. Lin, S. Hu, C.-C. J. Kuo, and L. Zuo, “Image
quality assessment based on local linear information and distortion-
specific compensation,” IEEE Trans. Image Process., vol. 26, no. 2,
pp. 915–926, Feb. 2017.

[28] S. Bosse, D. Maniry, and K. Müller, T. Wiegand, and W. Samek.
(Dec. 2016). “Deep neural networks for no-reference and
full-reference image quality assessment.” [Online]. Available:
https://arxiv.org/abs/1612.01697

[29] S. Wang, K. Gu, K. Zeng, Z. Wang, and W. Lin, “Objective quality
assessment and perceptual compression of screen content images,” IEEE
Comput. Graph. Appl., May 2016, doi: 10.1109/MCG.2016.46.

[30] K. Gu, S. Wang, G. Zhai, S. Ma, and W. Lin, “Screen image quality
assessment incorporating structural degradation measurement,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2015, pp. 125–128.

[31] P. J. L. van Beek, “Edge-based image representation and coding,”
Ph.D. dissertation, Dept. Elect. Eng., Delft Univ. Technol., Delft, The
Netherlands, 1995.

[32] Z. Ni, L. Ma, H. Zeng, C. Cai, and K.-K. Ma, “Screen content image
quality assessment using edge model,” in Proc. IEEE Int. Conf. Image
Process., Aug. 2016, pp. 81–85.

[33] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.

[34] D. Song and D. Tao, “C1 units for scene classification,” in Proc. 19th
Int. Conf. Pattern Recognit., 2008, pp. 1–4.

[35] D. Song and D. Tao, “Biologically inspired feature manifold for scene
classification,” IEEE Trans. Image Process., vol. 19, no. 1, pp. 174–184,
Jan. 2010.

[36] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process.,
vol. 20, no. 8, pp. 2378–2386, Aug. 2011.

[37] H. Zeng, A. Yang, K. N. Ngan, and M. H. Wang, “Perceptual sensitivity-
based rate control method for High Efficiency Video Coding,” Multime-
dia Tools Appl., vol. 75, pp. 10383–10396, Oct. 2015.

[38] A. Yang, H. Zeng, J. Chen, J. Zhu, and C. Cai, “Perceptual feature
guided rate distortion optimization for High Efficiency Video Cod-
ing,” Multidimensional Syst. Signal Process., Mar. 2016, pp. 1–18,
doi: 10.1007/s11045-016-0395-2.

[39] Methodology for the Subjective Assessment of the Quality of Television
Pictures, document Rec. ITU-R BT.500-11, International Telecommuni-
cations Union, 2012.

[40] M. H. Pinson and S. Wolf, “Comparing subjective video quality testing
methodologies,” Proc. SPIE Vis. Commun. Image Process., pp. 573–582,
Jun. 2003.

[41] D. M. Chandler, “Seven challenges in image quality assessment: Past,
present, and future research,” ISRN Signal Process., vol. 2013, 2013,
Art. no. 905685.

[42] A. M. Dijk, J.-B. Martens, and A. B. Waston, “Quality assessment of
coded images using numerical category scaling,” Proc. SPIE Adv. Image
Video Commun. Storage Technol., pp. 90–101, Feb. 1995.

[43] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[44] VQEG. (Aug. 2015). Final Report From the Video Quality Experts
Group on the Validation of Objective Models of Video Qual-
ity Assessment. [Online]. Available: http://www.its.bldrdoc.gov/vqeg/
vqeg-home.aspx

[45] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[46] Z. Wang and Q. Li, “Information content weighting for perceptual
image quality assessment,” IEEE Trans. Image Process., vol. 20, no. 5,
pp. 1185–1198, May 2011.

[47] E. C. Larson and D. M. Chandler, “Most apparent distortion:
Full-reference image quality assessment and the role of strategy,”
J. Electron. Imag., vol. 19, no. 1, pp. 011006-1–011006-21, 2010.

[48] S.-H. Bae and M. Kim, “A novel image quality assessment with globally
and locally consilient visual quality perception,” IEEE Trans. Image
Process., vol. 25, no. 5, pp. 2392–2406, Apr. 2016.

Zhangkai Ni received the B.E. degree in communi-
cation engineering from Anhui Normal University,
Wuhu, China.

He is currently pursuing the M.E. degree with
the School of Information Science and Engineering,
Huaqiao University, China. His research interests
include visual quality assessment, perceptual signal
processing, and computer vision.

Lin Ma (M’13) received the B.E. and M.E. degrees
in computer science from the Harbin Institute of
Technology, Harbin, China, in 2006 and 2008,
respectively, the Ph.D. degree from the Department
of Electronic Engineering, The Chinese University
of Hong Kong in 2013. He was a Researcher
with Huawei Noah’s Ark Laboratory, Hong Kong,
from 2013 to 2016. He is currently a Senior
Research Engineer with the Tencent AI Laboratory,
Shenzhen, China. His current research interests lie in
the areas of deep learning and multimodal learning,

specifically for image and language, image/video understanding, and quality
assessment.

Dr. Ma received the Best Paper Award from the Pacific-Rim Conference
on Multimedia in 2008. He was a recipient of the Microsoft Research Asia
Fellowship in 2011. He was a Finalist to HKIS Young Scientist Award in
engineering science in 2012.

Huanqiang Zeng (S’10–M’13) received the
B.S. and M.S. degrees from Huaqiao University,
Xiamen, China, and the Ph.D. degree from Nanyang
Technological University Singapore, Singapore, all
in electrical engineering.

He is currently a Professor with the School of
Information Science and Engineering, Huaqiao
University, Xiamen, China. He was a Post-
Doctoral Fellow with the Department of Electronic
Engineering, The Chinese University of Hong
Kong, Hong Kong, from 2012 to 2013, and a

Research Associate with the Temasek Laboratories, Nanyang Technological
University, Singapore, in 2008.

He has authored over 50 papers in well-known international journals and
conferences. His research interests are in the areas of visual information
processing and analysis, image/video communication, and computer vision.
He has been actively serving as an Associate/Guest Editor of multiple
international journals, a General Co-Chair of the 2017 IEEE International
Symposium on Intelligent Signal Processing and Communication Systems, a
Technical Co-Chair of 2017 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, an Area Chair of the 2015 IEEE
International Conference on Visual Communications and Image Processing,
and a Technical Program Committee Member of multiple international
conferences.



NI et al.: ESIM SCI QUALITY ASSESSMENT 4831

Jing Chen received the B.S. and M.S. degrees from
Huaqiao University, Xiamen, China, and the Ph.D.
degree from Xiamen University, Xiamen, China, all
in computer science.

She is currently an Associate Professor with
the School of Information Science and Engineer-
ing, Huaqiao University. Her current research inter-
ests include image processing, video coding, and
multiple description coding.

Canhui Cai (M’06–SM’08) received the B.S. degree
from Xidian University, Xi’an, China, in 1982, the
M.S. degree from Shanghai University, Shanghai,
China in 1985, and Ph.D. degree from Tianjin
University, Tianjin, China, in 2003, all in electronic
engineering.

Since 1984, he has been with the Faculty of
Huaqiao University, Quanzhou, China, where he is
currently a Professor with the School of Engineering.
He was a Visiting Professor with the Delft University
of Technology, Delft, The Netherlands, from 1991

to 1992, and a Visiting Professor with the University of California at Santa
Barbara, Santa Barbara, CA, USA, from 1999 to 2000. He has authored or
co-authored four books, and has authored over 150 papers in journals and
conference proceedings. His research areas include video communications,
image and video signal processing, and computer vision.

Dr. Cai was a General Co-Chair of the Intelligent Signal Processing and
Communication Systems in 2007.

Kai-Kuang Ma (S’80–M’84–SM’95–F’13)
received the Ph.D. degree in electrical and
computer engineering from North Carolina State
University, Raleigh, NC, USA. He was a member
of the Technical Staff with the Institute of
Microelectronics, from 1992 to 1995, where he was
involved in digital video coding and the MPEG
standards. From 1984 to 1992, he was with the
IBM Corporation, Kingston, NY, USA, and then
with Research Triangle Park, NC, USA, where he
was involved in various DSP and VLSI advanced

product development. He is currently a Professor with the School of Electrical
and Electronic Engineering, Nanyang Technological University Singapore,
Singapore. He has authored extensively in well-known international journals,
conferences, and MPEG standardization meetings. He holds one U.S. patent
on fast motion estimation algorithm. His research interests are in the areas
of fundamental image/video processing and applied computer vision.

He was serving as the Singapore MPEG Chairman and the Head of
Delegation from 1997 to 2001. On the MPEG contributions, two fast motion
estimation algorithms (Diamond Search and MVFAST) produced from his
research group have been adopted by the MPEG-4 standard, as the reference
core technology for fast motion estimation. He is the General Chair of
organizing a series of international standard meetings (MPEG and JPEG),
JPEG2000, and MPEG-7 workshops held in Singapore in 2001.

He was elected as a Distinguished Lecturer of the IEEE Circuits and
Systems Society for 2008-2009. He has served various roles in professional
societies, such as the General Co-Chair of APSIPA-2017, ISPACS-2017,
ACCV-2016 Workshop, and VCIP-2013, the Technical Program Co-Chair
of the ICASSP-2022, ICIP-2004, ISPACS-2007, IIH-MSP-2009, and
PSIVT-2010, and the Area Chair of the ACCV-2009 and ACCV-2010.
He also had extensive editorship contributions in several international
journals, such as the IEEE TRANSACTIONS ON IMAGE PROCESSING as
an Associate Editor from 2007 to 2010 and has been a Senior Area Editor
since 2015, has been an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 2015, the IEEE
SIGNAL PROCESSING LETTERS as an Associate Editor from 2014 to 2016,
the IEEE TRANSACTIONS ON COMMUNICATIONS an Editor from 1997 to
2012, the IEEE Transactions on Multimedia as an Associate Editor from 2002
to 2009, the Journal of Visual Communication and Image Representation as
an Editorial Board Member from 2005 to 2014. He is an Elected Member of
three IEEE Technical Committees, such as the Image and Multidimensional
Signal Processing Committee, the Multimedia Communications Committee,
and the Digital Signal Processing. He was the Chairman of the IEEE Signal
Processing, Singapore Chapter from 2000 to 2002.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


