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Abstract

Pedestrian gender recognition is a very challenging problem, since the viewpoint variations, illumi-
nation changes, occlusion, and poor quality are usually encountered in the pedestrian images. To address
this problem, an effective HOG-assisted deep feature learning (HDFL) method is proposed in this paper.
The key novelty lies in the design of HDFL network to effectively explore both deep-learned feature and
weighted histogram of oriented gradient (HOG) feature for the pedestrian gender recognition. Specifi-
cally, the deep-learned and weighted HOG feature extraction branches are simultaneously performed on
the input pedestrian image. A feature fusion process is subsequently conducted to obtain a more robust
and discriminative feature, which is then fed to a softmax classifier for pedestrian gender recognition.
Extensive experiments on multiple existing pedestrian image datasets have shown that the proposed
HDFL method is able to effectively recognize the pedestrian gender, and consistently outperforms the
state-of-the-art methods.
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid development of internet, cloud computing, and multimedia technologies,
digital video surveillance systems have been widely deployed in various areas, such as shop-
ping mall, train station, airport, and so on. In these digital video surveillance systems, object
identification plays a very important role for public safety [1]. Due to the extremely huge
amount of visual data, various intelligent visual analytic tools have been developed as ef-
fective and essential solutions for identifying different attributes of objects in efficient and
accurate manner, including visual object detection [2—6], face recognition [7], pedestrian re-
identification [8,9], gender recognition [10], action recognition [11], race recognition [12], to
name a few.

For a pedestrian, gender is one of the most important and useful attributes in many appli-
cations, e.g., human—computer interaction, video surveillance, health care, population statis-
tics and multimedia retrieval system [13]. However, pedestrian gender recognition is a very
challenge problem, which can be easily observed from some samples of pedestrian images
selected from various datasets [14] as shown in Fig. 1. Firstly, in the practical scenarios, the
appearances and postures of pedestrians are very diversified. Secondly, the pedestrian images
captured by the surveillance cameras under different environments are often of poor quality,
especially in the long distance condition. Specifically, the viewpoint variation, background
clutter, illumination change and object occlusion are frequently encountered in the pedestrian
images. Therefore, how to develop an effective pedestrian gender recognition method becomes
a meaningful but difficult research topic in the computer vision field.

To address the problem of gender recognition, prior works generally follow the traditional
image classification framework, which consists of two main stages: feature extraction and
classification. The commonly used procedure is to design a highly representative and dis-
criminative feature descriptor for gender in the first stage, followed by obtaining an accurate
binary classifier that can well distinguish the difference between male and female in the sec-
ond stage. Intuitively, a good feature representation should not only be robust to various noises
but also be very discriminative. For that, many well-known hand-crafted features are devel-
oped based on the knowledge and expertise of the researchers and have been demonstrated
their successes on the gender recognition based on the facial images, e.g., the histogram of
gradient (HOG) [10], the local binary pattern (LBP) [15], iris code [16], etc.. However, they
might not be effective for the gender recognition based on pedestrian images. This is because
the pedestrian images are usually suffered from the view variations, occlusions, illumination
changes, etc., and it is hard to obtain the reliable face information of the pedestrian in the
real-world scenarios. Unlike the hand-crafted features, the deep neural network (DNN)-based
methods can automatically learn effective representations of the input data so as to improve
the performance of the classifier. Hence, instead of hand-crated features, the DNN, especially
convolutional neural network (CNN), has achieved a great success in many computer vision
tasks [17]. However, the DNN-based methods usually require the larger scale training dataset
to learn an effective model.

Based on the above-mentioned analysis, the hand-crafted features would be more reliable
to capture the local image characteristic while the deep-learned feature would be more adap-
tive to the input data. Intuitively, they could be considered as complementary parts to each
other. In this paper, we propose an effective pedestrian gender recognition method by spe-
cially designing HOG-assisted deep feature learning (HDFL) network to effectively explore
the advantages of both hand-crafted feature and deep-learned feature. To be more specific,
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Fig. 1. Examples of pedestrian images selected from various pedestrian datasets.

the proposed HDFL approach simultaneously performs the deep-learned and weighted HOG
feature extraction on the input pedestrian image in the first stage. The above-mentioned two
features are then fused together as a more robust and discriminative feature for training a
binary classifier for pedestrian gender recognition. Extensive experiments are carried out on
multiple existing pedestrian datasets, CUHK, PRID, GRID, MIT, and VIPeR [14], showing
that the proposed HDFL method outperforms the state-of-the-art pedestrian gender recognition
methods.

The rest of this paper is organized as follows. Section 2 introduces the related gender recog-
nition works. Section 3 describes the proposed pedestrian gender recognition method, HDFL,
in detail. Section 4 presents the experimental results and discussions. Section 5 provides the
conclusion.

2. Related work

In this section, we briefly review the existing gender recognition works, which can be
roughly divided into two categorizes based on the types of input image: (1) face image-based
gender recognition, and (2) pedestrian image-based gender recognition.

2.1. Face image-based gender recognition

Considering that facial feature is one of the most effective biometric characteristics for
personal recognition, gender recognition based on face image is developed for those practical
scenarios where are able to acquire clear face information. The existing methods extract
different features to fully explore the face information for gender recognition from the holistic
or local level, such as the geometric relationships between the facial landmarks [18], the raw
pixel combination [19], pixel differences [20], Haar-like feature [21], LBP [15], and so on.
Then, the extracted features are usually fed into a classifier for learning a discriminative
model, for example, the AdaBoost and the support vector machine (SVM) classifiers have
been widely employed [15,20,22].

In addition, some supervised learning methods, e.g., Extreme learning machine (ELM)
[23,24] and Deep Convolutional Neuron Network (DCNN) [25,26], are also used for the face
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image-based gender recognition. For instance, Mahmood et al. [24] proposed a fast adaptive
shrinkage/thresholding algorithm ELM (FASTA-ELM) for solving face image-based gender
recognition problem. Levi and Hassncer [25] designed a DCNN to recognize the gender
and age attributes based on the real-world face images. Mansanet et al. [26] presented a
discriminative model, called Local Deep Neural Network (Local-DNN), to learn from the
small overlapping regions in the visual field for gender recognition.

2.2. Pedestrian image-based gender recognition

In general, it is hard to obtain the clear face image in the practical sceneries. On the
contrary, pedestrian images are easier to be captured at a distance without the pedestrian’s
cooperation. To this end, it could be more practical to develop the pedestrian image-based
gender recognition. For that, some researchers have been devoted to infer the gender from
the body structure of pedestrian. For example, gait feature, which describes the walking
manner of a pedestrian, is extracted as an effective biometric characteristic for pedestrian
gender recognition [27-30]. Yu et al. [27] used gait energy image (GEI) together with SVM.
Lu and Tan [29] proposed a view-invariant gait-based gender recognition algorithm by using
subspace learning. Hu et al. [28] presented a mixed conditional random field approach for gait-
based gender recognition. Lu et al. [30] performed gender recognition based on pedestrian
gait sequences with arbitrary walking directions. In addition, some traditional hand-crafted
features, which are originally proposed for other object recognition problems, are applied on
pedestrian gender recognition. Cao et al. [31] made the first attempt to employ the HOG
feature and Adaboost classifier for exploiting silhouette information on gender recognition, in
which each image was firstly divided into a collection of patches that model different parts
of human body and further represented by HOG feature. Collins et al. [32] presented an
improved HOG feature (namely, PixelHOG). The PixelHOG descriptor exploited the dense
HOG features computed from an edge map and HSV color information based on the pixels’
hue and saturation. Bourdev et al. [33] proposed a so-called poselet feature consisting of HOG,
color histogram and skin, followed by training attribute classifiers using SVM to predict gender
in unconstrained environments. Although the poselet feature is robust to pose variations and
occlusion, it requires a lot of training data with detailed annotations of the human body. Guo
et al. [34] employed biologically-inspired feature (BIF) derived from Gabor filters and a linear
SVM classifier for gender classification.

In addition to the above-mentioned hand-crafted features, there are a few deep learning-
based pedestrian gender recognition methods. Ng et al. [35] made the first attempt to train
a CNN for gender recognition on the MIT dataset. Their CNN model involves two-stage
convolution and subsampling layers and a fully-connected layer with 25 neuron units before
prediction layer. Moreover, Ng et al. [36] further studied the image representation on different
color spaces for training a CNN on gender recognition. Similar to the network structure in
[35], Antipov et al. [37] trained a CNN model (denoted as Mini-CNN) and further fine-tuned
a pre-trained CNN (called AlexNet) to effectively improve the pedestrian gender recognition
rate.

3. HOG-assisted deep feature learning for pedestrian gender recognition

Fig. 2 shows the architecture of the proposed HOG-assisted deep feature learning (HDFL)
Network for Pedestrian Gender Recognition. One can see that the proposed HDFL approach
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Fig. 2. Illustration of the framework of the Proposed HDFL.

starts with the deep-learned and weighted HOG feature extraction, followed by a feature fusion
stage to obtain a more robust and discriminative feature. After that, a softmax classifier is
learned on the fused feature for pedestrian gender recognition. The details of the proposed
HDFL will be outlined in the following subsections.

3.1. Deep-learned feature extraction

There are many existing deeper and wider CNN models that have demonstrated their
effectiveness on recognition problems, such as the VGGNet, GoogleNet, and so on. However,
it is inappropriate to directly apply them on the pedestrian gender recognition task. This is
because (1) they do not consider the special characteristic of gender attribute and pedestrian
image, for example, pedestrian images are often captured under a long distance and of low
resolutions; (2) they require a large scale training dataset to learn millions parameters of
models, while the existing pedestrian image datasets are too small to train these deeper and
wider modules. For that, a light convolutional neural network is adopted in the proposed
HDFL to extract the deep-learned feature in this work. As shown in the upper part of Fig. 2,
the deep-learned feature extraction branch consists of three convolution layers (i.e., C1, C3,
C5), three subsampling layers (i.e., S2, S4, S6), and a fully connected layer with 128 neuron
units (i.e., F7).

In the input layer, the input color images used in our HDFL approach are with the size
of 48 x 128 and three channels (i.e., R, G, B). In the convolutional Cj (i.e., Cl, C3, C5)
layer, the feature maps are obtained by convolving a set of filters with output feature map
of previous layer X;, and then passing through Batch Normalization (BN) [38] and rectified
linear unit (ReLU) activation function. First of all, the output feature map of convolution
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Table 1
Algorithm steps of BN operation.

Input: Values of y* over a mini-batch: B = {yf, e ,y’,&};
y* denotes the k—th element of feature map Y;, and M is the batch size.
Output: v; = BNy_ﬁ(yff)

[ ﬁ e v //mini-batch mean
of « kﬁ Z{Z L OF = ug)? // mini-batch variance
- Vi .
i < 5— /I normalization
Yi ”§+E
Vi < yYi+ B =B8N, 507) //scale and shift

€ is a constant to ensure numerical stability.
y and B are parameters needed to be learned.

operation Y; in Cj layer can be formulated as

Yj =) Wi®Xi+b M
JeN

where W; ; means the weights of the filter with the size of s;, x s,,, which connects the feature
map of the previous layer X; to the feature map Y;, and b; denotes the corresponding trainable
bias, ® denotes the convolution operation, N denotes the set of all or selected feature maps
from previous layer. Assume that the size of an input feature map is . x w, the convolutional
layer with filters of size s x s,, and stride of d will produce a set of feature maps with a size
of (thS” + 1) x (*5* + 1), disregarding the border effects. Then, the BN operation is applied
on the output feature map of convolution operation Y;, and the corresponding algorithm steps
can be referred to Table 1. Finally, the output of BN, v;, is further passed though the ReLU
activation function f, which introduces non-linearities and is given as below:

f ) =max(0,v;) )

In the subsampling S;,; (i.e., S2, S4, S6) layer, the feature maps are obtained by down-
sampling each feature map of the corresponding previous layer (i.e., C1, C3, C5). The down-
sampling is to exploit the maximum pooling operation. In other words, the largest value in a
local region with a pre-set window size of previous layer is taken as the value of the feature
map of the current layer. In the fully connected layer F7, each neuron unit fully connects to
all the neuron units in the feature map of layer S6, in which the ReLU activation function is
also employed and the Local Response Normalization (LRN) [39] is further used to perform
normalization. Note that the LRN with across-channels region normalization is employed in
this work, that is, in across-channels mode, the local regions extend across nearby channels.
Specifically, let ai,y be the output value of a neuron unit i at position (x, y), the LRN output
bfm, can be calculated as follows [39]:

. a
b, = i 5 3)
) (k e Zmin(N—l,i-Fn/Z)(aiy)z)

Jj=max(0,i—n/2)

where the parameters, k =2, o = 107*, 8 =0.75, n =5, are set as suggested in [39], and
N = 128 is equal to the number of neuron units in F7 layer of the proposed HDFL network.

In the proposed HDFL network, the number of filters in all convolutional layers is set to
32, since the size of pedestrian image dataset is small and less number of filters is beneficial
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Table 2
The parameter details of our specially designed HDFL network.
Layers Types Filter sizes Filter number Stride Output sizes
Cl1 Input - - - 3 x 128 x 48
Convolution 5 x5 32 1 32 x 124 x 44
BN - - - 32 x 124 x 44
ReLU - - - 32 x 124 x 44
S2 Maxpool 2 x 2 - 2 32 x 62 x 22
C3 Convolution 5 x5 32 1 32 x 58 x 18
BN - - - 32 x 58 x 18
ReLU - - - 32 x 58 x 18
S4 Maxpool 2 x 2 - 2 32 x 29 x 9
C5 Convolution 3 x3 32 1 32 x 27 x 7
BN - - - 32 x 27 x 7
ReLU - - - 32 x 27 x 17
S6 Maxpool 3 x3 - 2 32 x 13 x 3
F7 FC 1 x 1 128 - 128 x 1 x 1
ReLU - - - 128 x 1 x 1
LRN - - - 128 x 1 x 1
FW*—HOG FC 1 x 1 128 - 128 x 1 x 1
BN - - - 128 x 1 x 1
ReLU - - - 128 x 1 x 1
LRN - - - 128 x 1 x 1
Fusion Concat - - - 256 x 1 x 1
F8 FC 1 x 1 2 - 2 x 1 x1

to avoid over-fitting problem. In addition, the tiny-sized filters, i.e., 5 x 5, 5 x 5, and
3 x 3, are individually applied in C1, C3, and C5 layer for saving the filter parameters. This
is because the filters with smaller sizes are more efficient to extract the deeper image details
and thus more appropriate for pedestrian modelling, as the pedestrian usually has rich texture
information. The stride of all the convolutional layers is set to 1 for retaining the image
details as much as possible. For S2, S4, S6 layers, the 2 x 2,2 x 2,3 x 3 max pooling
operation is used, respectively, and the stride is all set to 2. More parameter configuration of
the deep-learned feature extraction branch in our designed HDFL network can be referred to
Table 2.

3.2. Weighted HOG feature extraction

Many hand-crafted features are commonly used for various computer vision
tasks [15,21,31,40], which could be considered as a complementary part to the deep-learned
feature. Based on this intuition, the histogram of oriented gradient (HOG) [40] feature is
employed to assist the deep feature learning for recognizing the pedestrian gender, since
the HOG feature can effectively describe the local contour of input image and is robust to
the illumination change, orientation variation, etc.. Specifically, as shown in the lower part
of Fig. 2, a weighted HOG feature extraction branch is developed in the proposed HDFL
network, which can be described as below:
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Fig. 3. The computational process of HOG feature.

Gradient magnitude and orientation computation: for the input pedestrian image, the
gradient of each pixel can be computed in the first stage:

Gr(x,y) =I(x+1,y) —I(x—1,y)
Gv(xd’):I(x,)"l'])—I(x,y_1) (4)

where I(x, y) denotes the pixel value at location (x, y) in an input pedestrian image,
Gp(x, y) and G,(x,y) mean the horizontal and vertical gradient, respectively. Then, the
gradient magnitude G(x, y) and gradient orientation «(x, y) can be calculated as below:

G(x,y) = G (x, )2 + G, (x,)?
G,(x,y)

5
Gi(x,y) ©)

a(x,y) = arctan

HOG feature vector generation: as shown in Fig. 3, the input image (i.e., 128 x 48)
is firstly divided into 15 x 5 blocks with the size of 16 x 16 using the overlap-
ping strategy via a 8-pixel stride, since the overlapping strategy between neighboring
blocks can enhance the local correlation. Each block will be further divided into 4
cells with the size of 8 x 8. For each cell, nine Bins splitted over 0 — & are used

ing
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to accumulate the gradient magnitude on the corresponding gradient direction. Specif-
ically, let o, @y, 2, ..., a9 individually present 0,7 /9,27 /9, ..., m, For each pixel
(x, ¥) in the cell, if o; < a(x,y) <oip (1 €0,1,2,...,8), then Bin B; is chosen and
B; = B; + G(x,y). To have a better robustness to illumination change and noise, a L2-
norm normalization step is performed on the obtained Bin B; as follows:

B;

VIBill3 + ¢

where ¢ is a small positive value to ensure the numerical stability. Hence, it will produce
a 9-dimensional gradient orientation histogram vector B} for each cell, and consequently
a4 x 9 = 36 dimensional HOG feature vector for each block, as illustrated in Fig. 3.

(3) Weighted HOG (W-HOG) feature via fully connection: to adopt the HOG feature in
our specially designed HDFL network, a fully connected layer Fy.pog with 128 neu-
ron units is employed to fully connect the HOG feature. However, the obtained HOG
feature vector by step (2) is with the dimension 36 x 5 x 15 = 2700 for an input
pedestrian image, which would lead to a lot of parameters. To reduce the number of
parameters in the fully-connected layer Fy _pog, the traditional Principal Component
Analysis (PCA) [41] is performed to reduce the HOG feature dimension from 2700D
to 128D. After that, the PCA compressed HOG feature is fully connected to the layer
Fw_noc, in which the BN, ReLU activation function, and the LRN are used. More pa-
rameter configuration of the weighted HOG feature extraction branch in our designed
HDFL network is listed in Table 2.

B, = (6)

3.3. Deep-learned and weighted HOG feature fusion

Considering that the weighted HOG feature could effectively assist the deep-learned feature,
the proposed HDFL network exploited a Feature Fusion Layer to combine these two kinds of
features to produce a more robust and discriminative feature (i.e., HOG-assisted deep-learned
feature, HDF) for pedestrian gender recognition, as illustrated in Fig. 2. Consequently, the
HDF feature with 256 dimension, agpr, can be presented as

agpr = lapr, aw.nocl = ao.pF, - - -, A127,0F, Q128 W—HOG> - - - » A255W-HOG) (N

where the apr and ay_yoc denote the deep-learned feature vector and weighted HOG feature
vector, respectively.

Through such feature fusion processes, the proposed HDFL method could learn a model to
effectively explore the merits of both deep-learned and weighted HOG features for pedestrian
gender recognition. This can be observed from both forward and back propagation processes,
as follows. In the forward propagation process, the prediction score in the layer F8, s(agpr),
can be computed according to the forward propagation algorithm:

s(agpr) = Wagpr + b ®)

where W and b denote the weights and bias term, respectively. They are used to project the
HDF feature aypr into the prediction score. The obtained prediction score s(agpr) is then
fed to a 2-way softmax for calculating the loss. The softmax loss can be minimized in terms
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of cross-entropy loss:

2
L=-) pjlogp;. ©)
j=1
where p means the output of likelihood of the softmax, and can be formulated as
exp(s;)
pis) = ——— (10)

1 enp(s))

From the above equations, it can be clearly observed that the softmax loss L will be influenced
by both deep-learned feature vector apr and weighted HOG feature vector ay.yoc in the
forward propagation process.

Besides, in the back propagation process, our proposed HDFL method aims to minimize
the objective function J [42], which is solved by using stochastic gradient decent (SGD). Let
W/ be the weight connecting the j—th unit in (m — 1)-th layer and the i—th unit in m-th layer,

and z' =), Wl-;f’a’ffl, where a’}“l =f (Z;fﬁl) and f denotes the activation function. Taking

the layer F7 as an example, we obtain
aJ
iy = o] an
ij

where x?’ pr 18 j—th element of output feature map of layer S6, and

5 = (z wk%»s,é)fxzzm) "
k

Y

88 ==
T A

(13)

It should be pointed out that z,% = Zk W,S.a,-,HDF, where a; gpr is the ith element of the

HDF feature vector agpr as shown in (7). Therefore, it can be seen that through a; ypr —

=8 -8 — % the 3‘;{7 will be affected by both deep-learned feature vector apr and
ij ij

weighted HOG feature vector ay.pog in the back propagation process.

3.4. Implementation details

Some implementation details of the proposed HDFL method can be described as follows.
Firstly, the proposed HFDL model is trained by using stochastic gradient decent (SGD) [43],
where the initial learning rate is set as [ = 0.01 and decreased by [/ x 0.1 after every 1500
iterations. All images used in our experiments are resized to 48 x 128 and subtracted their
corresponding mean values. In order to avoid over-fitting problem, the horizontal mirrored
copies of the training images are used to augment the training data, and the overall training
data are randomly shuffled. During the training phase, the weights are initialized from a
normal distribution N(0, 0.01) and the biases are initialized as 0. In each iteration, a batch
size of 128 samples is fed to the HDFL network for training, and the weights are updated
by using back propagation. The details of the parameter configuration of the proposed HDFL
network are shown in Table 2.
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Table 3
Pedestrian datasets.
Datasets Image numbers Resolution Environment
CUHK 4563 80 x 160 Outdoor (camera in high angle)
PRID 1134 64 x 128 Outdoor (most profile view)
GRID 500 + 777 (background) From 29 x 67 to 169 x 365 Underground station (8 disjoint camera views)
MIT 888 64 x 128 Frontal (420) and rear (468) views
VIPeR 1264 48 x 128 Outdoor
Table 4
Training and testing images from each dataset.
Datasets Training size (3 + Q) Testing size (& + Q)
CUHK 3844 = (2715+1129) 379 = (1904 189)
PRID 947 = (458 +489) 101 = (50+51)
GRID 928 = (531+4397) 100 = (50+50)
MIT 788 = (538+250) 84 = (42+42)
VIPeR 1113 = (5464 567) 120 = (60+60)
Total 7620 784

4. Experimental results and discussions
4.1. Datasets and evaluation protocol

In this section, the performances resulted from the proposed HDFL method and other state-
of-the-art methods are compared based on multiple widely-used and challenging datasets [14],
including CUHK, PRID, GRID, MIT, and VIPeR. These datasets as shown in Table 3 con-
tain different kinds of pedestrian images, largely varying in appearances of the pedestrian,
resolutions, environments (indoors or outdoors), and camera viewpoints (profile, frontal, rear,
and high angle, etc.). By following the same practice in [37], we also filter out some images
that consist of the same pedestrian or unidentified target or are with very low resolution.
The corresponding numbers of training and testing images from each dataset are shown in
Table 4. Our experiments randomly divide 8404 images from all the datasets into 2 parts:
7620 images for training and 784 images for testing, and repeats the random trials 10 times
to obtain the average Mean Average Precision (MAP) and Area Under ROC Curve (AUC)
[44] as the final results.

4.2. Performance comparison

To demonstrate the superiority, the proposed HDFL method is compared with some existing
deeper networks and state-of-the-art pedestrian gender recognition methods, including Mini-
CNN [37], AlexNet-CNN [37], VGGNetl6 [45], GoogleNet [46], ResNet50 [47]. To further
analyze how much of the contributions coming from the deep-learned feature and weighted
HOG feature respectively, the performances resulted from deep feature learning (DFL) solely
and Weighted HOG (W-HOG) solely are also investigated. Note that the DFL network and
weighted HOG are exactly the deep-learned feature extraction branch and weighted HOG
feature extraction branch in Fig. 2, respectively, except that 256 neuron units are employed
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Table 5

Performance comparison.

Methods MAP AUC
Mini-CNN [37] 0.80 0.88
AlexNet-CNN [37] 0.85 0.91
VGGNetl6 [45] 0.87 0.89
GoogleNet [46] 0.90 0.91
ResNet50 [47] 0.89 0.90
Proposed W-HOG 0.85 0.86
Proposed DFL 0.92 0.93
Proposed HDFL 0.94 0.95
Table 6

Comparison between the DF and HDF in terms of distance of centroid.

Feature DF HDFL
D¢ 9.2 10.03

in layers F7 and Fy_goc for having a fair comparison to the proposed HDFL that has 256
neuron units in the feature fusion layer.

Table 5 shows the performances of these methods on the datasets documented in Table 3.
One can clearly see that the proposed HDFL method is able to achieve the highest MAP and
AUC, and consistently outperforms the state-of-the-art methods under comparison. In addition,
it can be further observed that the DFL and W-HOG achieve relatively good performances,
and the proposed HDFL that jointly explores the deep-learned and weighted HOG features
performs the best. This investigation suggests that the deep-learned feature and weighted
HOG feature effectively convey different characteristics of pedestrian gender, and they play
a complementary role to jointly capture the gender properties well for delivering accurate
pedestrian gender recognition.

4.3. Analysis of the proposed HDFL method

4.3.1. Assistance behavior of weighted HOG feature to deep-learned feature

To analyze the assistance behavior of weighted HOG feature to deep-learned feature, the
extracted deep-learned feature (DF) and the HOG-assisted deep-learned feature (HDF) are
visualized in Fig. 4. Moreover, the well-known squared Euclidean distance of centroid D¢
[48] is exploited to quantitatively measure the discriminative ability of the DF and HDF,
which can be defined as follows:

Dc = | Xr — Xull? (14)

where X and X, denote the mean feature vectors of the female and male classes, respec-
tively. Note that the z-score normalization is performed on the DF and HDF to make the
extracted DF and HDF at the same scale, and the mean feature vectors (Xr and Xj,) are
calculated based on the normalized DF and HDF. Note that a larger value of D¢ indicates a
larger inter-class distance. The comparison between the DF and HDF in terms of distance of
centroid is shown in Table 6.

One can see from Fig. 4 that the intersection area of the scatter plot of the HDF is smaller
than that of the DF. In other words, the HDF has a better separability than the DF. Moreover,
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Fig. 4. Visualization of deep-learned feature (DF) and HOG-assisted deep-learned feature (HDF).

Table 7

Performance of the proposed HDFL without and with LRN.

Methods MAP AUC
HDFL without LRN 0.93 0.94
HDFL with LRN 0.94 0.95

it can be further observed from Table 6 that the HDF yields a larger distance of centroid (i.e.,
larger inter-class distance), compared with that of the DF. All these clearly indicate that the
HDF is more discriminative than the DF. And the proposed HDFL is thus able to achieve
higher recognition rates than the proposed DFL as documented in Table 5. This is due to the
effective assistance behavior of weighted HOG feature to DF.

4.3.2. Effectiveness of local response normalization (LRN)

To demonstrate the effectiveness of LRN, experiments have been conducted to compare
the performance of the proposed HDFL without and with LRN. The corresponding results are
documented in Table 7. One can see from Table 7 that LRN improves the performance by 0.01
MAP and 0.01 AUC, and is useful for the proposed HDFL. To better explain the underlying
cause, Fig. 5 provides an example of HDF feature vector resulted from the proposed HDFL
without and with LRN. It can be observed that the LRN can normalize the deep-learned
feature and weighted HOG feature into the similar scale. This would be very beneficial to
feature fusion, in which the weighted HOG feature could be more effective to assistant the
deep-learned feature for producing a more discriminative HDF.

4.3.3. Misclassified samples analysis
In the pedestrian gender recognition problem, misclassification (i.e., the pedestrian gen-
der is male and wrongly classified as female, and vice versa) is unavoidable. To conduct a
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Fig. 6. Misclassification rate on each dataset.

comprehensively misclassified samples analysis, experiments are performed by using the pro-
posed DFL and HDFL on all the images in the datasets. Fig. 6 shows the misclassification
rate in various datasets. For each dataset, the misclassification rate is computed as the ratio
between the number of the misclassified images and the total images. It can be found that the
proposed HDFL significantly reduces the misclassification rate, compared with the proposed
DFL. This further demonstrates the observation that the HDF is more distinctive than DF due
to the assistance behavior of weighted HOG feature.

Moreover, Fig. 7(a) shows some examples of pedestrian images that are misclassified by
the proposed DFL while correctly classified by the proposed HDFL, and Fig. 7(b) provides
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Fig. 7. Examples of misclassified pedestrian images in various datasets: (a) misclassification only by the proposed
DFL; (b) misclassification by both proposed DFL and HDFL.

Table 8

Testing images for cross-dataset evaluation.

Datasets Testing size (& + Q)
3DPeS 100 = (50450)
CAVIAP 68 = (34+34)
i-LIDS 100 = (504-50)
SARC3D 40 = (20+4-20)
TownCentre 42 = 21421
Total 350

some examples of pedestrian images misclassified by both proposed DFL and HDFL methods.
It can be seen that the pedestrian images in Fig. 7(b) are more challenging than Fig. 7(a)
overall. For example, in the Ist image of Fig. 7(b), the male with long hair is easier to be
misclassified, since the long hair is one of the major features of female. Besides, although the
2nd and 5th images in Fig. 7(b) are female, they are hard to be distinguished, even by a human
observer. In addition, the incomplete silhouette (e.g., the Ist image in Fig. 7(b)), occlusion,
distortion (e.g., the 3rd image in Fig. 7(b)), and unusual pose (e.g., the 4th image in Fig. 7(b)),
etc., are very difficult for pedestrian gender recognition problem, leading to misclassification.
Future work will include devising a better model to improve the pedestrian recognition rate
by further collecting more training images and considering more discriminative hand-crafted
feature based on the proposed HDFL network.

4.4. Cross-dataset evaluation

To demonstrate the generalization ability, the proposed HDFL method, some existing deeper
networks and state-of-the-art pedestrian gender recognition methods, including Mini-CNN
[37], AlexNet-CNN [37], VGGNetl6 [45], GoogleNet [46], ResNet50 [47], are tested on
multiple completely unseen datasets [14], i.e., 3DPeS, CAVIAR, i-LIDS, SARC3D and Town-
Centre. In this cross-dataset evaluation, the numbers of testing pedestrian images randomly
selected from each unseen dataset are shown in Table 8. This experiment also repeats the
random trials 10 times to obtain the average MAP and AUC as the final results. The corre-
sponding results are shown in Table 9.

It is interesting to see that the performances of all the methods are decreased, compared
with that in Table 5. This is because the testing images are completely unseen for these
methods in this cross-dataset evaluation. It can be further observed that the proposed HDFL
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Table 9

Performance comparison in cross-dataset evaluation.

Methods MAP AUC
Mini-CNN [37] 0.75 0.80
AlexNet-CNN [37] 0.79 0.85
VGGNetl6 [45] 0.83 0.84
GoogleNet [46] 0.83 0.83
ResNet50 [47] 0.85 0.86
Proposed W-HOG 0.79 0.79
Proposed DFL 0.87 0.89
Proposed HDFL 0.89 0.91

also achieves the highest MAP and AUC, and is consistently superior to the state-of-the-art
methods under comparison. This cross-dataset evaluation reveals that the proposed HDFL
method has good generalization ability.

5. Conclusion

In this paper, a novel HOG-assisted deep feature learning (HDFL) method is proposed
for pedestrian gender recognition. The superior performance is achieved by designing a spe-
cial HDFL network to fully explore both deep-learned feature and weighted HOG feature.
By designing a special HDFL network, the deep-learned and weighted HOG features are
simultaneously extracted for the input pedestrian image and then fused together to obtain a
more discriminative feature, which is then fed into the softmax classifier for pedestrian gender
recognition. Extensive experiments on multiple challenging datasets show the proposed HDFL
method can effectively recognize the pedestrian gender, yield good generalization ability, and
consistently outperform the state-of-the-art methods.
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